Suppr超能文献

基于配体和结构的层次虚拟筛选级联,用于寻找新型表皮生长因子受体抑制剂。

Ligand and structure based hierarchical virtual screening cascade for finding novel epidermal growth factor receptor inhibitors.

机构信息

State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.

Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, China Petroleum & Chemical Corporation (SINOPEC), Dalian, China.

出版信息

Chem Biol Drug Des. 2024 Jan;103(1):e14375. doi: 10.1111/cbdd.14375. Epub 2023 Oct 17.

Abstract

The epidermal growth factor receptor (EGFR) tyrosine kinase plays an important role in tumor formation and growth by mediating cell growth and other physiological processes. Therefore, EGFR is a promising target for the treatment of cancer. In this work, we combined ligand-based and structure-based virtual screening methods to identify novel EGFR inhibitors from a library of more than 103 thousand compounds. We first obtained hundreds of compounds with similar physiochemical properties through 3D molecular shape and electrostatic similarity screening with potent inhibitors AEE788 and Afatinib as queries. Next, we identified compounds with strong binding affinities to the EGFR pocket through molecular docking, which makes good use of the structure information of the receptor. After molecular scaffold analysis, our bioassay confirmed 13 compounds with EGFR inhibitory activity and three compounds had IC values below 1000 nM. In addition, we collected 5371 EGFR inhibitors from online databases, and clustered them into 7 groups by K-means method using their ECFP4 fingerprints as input. Each cluster had typical molecular fragments and corresponding activity characteristics, which could guide the design of EGFR inhibitors, and we concluded that the fragments from some of the hits are indicated in the highly active scaffolds.

摘要

表皮生长因子受体 (EGFR) 酪氨酸激酶通过介导细胞生长和其他生理过程,在肿瘤的形成和生长中发挥重要作用。因此,EGFR 是癌症治疗的一个有前途的靶点。在这项工作中,我们结合配体和基于结构的虚拟筛选方法,从超过 103000 种化合物的文库中鉴定出新型 EGFR 抑制剂。我们首先通过 3D 分子形状和静电相似性筛选,获得了数百种与强效抑制剂 AEE788 和 Afatinib 具有相似理化性质的化合物。接下来,我们通过分子对接鉴定了与 EGFR 口袋具有强结合亲和力的化合物,这充分利用了受体的结构信息。经过分子骨架分析,我们的生物测定法证实了 13 种具有 EGFR 抑制活性的化合物,其中 3 种化合物的 IC 值低于 1000 nM。此外,我们从在线数据库中收集了 5371 种 EGFR 抑制剂,并用 K-means 方法对它们的 ECFP4 指纹图谱进行聚类,得到 7 个簇。每个簇都有典型的分子片段和相应的活性特征,这可以指导 EGFR 抑制剂的设计,我们得出结论,一些命中化合物的片段表明在高活性骨架中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验