Department of Electrical and Computer Engineering, University of British Columbia, British Columbia, Canada.
Point to Point Research Development, British Columbia, Canada.
Am J Vet Res. 2023 Oct 17;85(1). doi: 10.2460/ajvr.23.07.0173. Print 2024 Jan 1.
The objective of this study was to develop a robust machine-learning approach for efficient detection and grading of sesamoiditis in horses using radiographs, specifically in data-limited conditions.
A dataset of 255 dorsolateral-palmaromedial oblique (DLPMO) and dorsomedial-palmarolateral oblique (DMPLO) equine radiographs were retrospectively acquired from Hagyard Equine Medical Institute. These images were anonymized and classified into 3 categories of sesamoiditis severity (normal, mild, and moderate).
This study was conducted from February 1, 2023, to August 31, 2023. Two RetinaNet models were used in a cascaded manner, with a self-attention module incorporated into the second RetinaNet's classification subnetwork. The first RetinaNet localized the sesamoid bone in the radiographs, while the second RetinaNet graded the severity of sesamoiditis based on the localized region. Model performance was evaluated using the confusion matrix and average precision (AP).
The proposed model demonstrated a promising classification performance with 92.7% accuracy, surpassing the base RetinaNet model. It achieved a mean average precision (mAP) of 81.8%, indicating superior object detection ability. Notably, performance metrics for each severity category showed significant improvement.
The proposed deep learning-based method can accurately localize the position of sesamoid bones and grade the severity of sesamoiditis on equine radiographs, providing corresponding confidence scores. This approach has the potential to be deployed in a clinical environment, improving the diagnostic interpretation of metacarpophalangeal (fetlock) joint radiographs in horses. Furthermore, by expanding the training dataset, the model may learn to assist in the diagnosis of pathologies in other skeletal regions of the horse.
本研究旨在开发一种稳健的机器学习方法,以利用 X 光片高效检测和分级马的籽骨炎,特别是在数据有限的情况下。
本研究回顾性地从 Hagyard 马医学研究所获取了 255 张掌侧-跖侧斜位(DLPMO)和跖侧-背侧斜位(DMPLO)马 X 光片。这些图像经过匿名化处理,并分为 3 个籽骨炎严重程度类别(正常、轻度和中度)。
本研究于 2023 年 2 月 1 日至 8 月 31 日进行。使用两个级联的 RetinaNet 模型,第二个 RetinaNet 的分类子网中包含一个自注意力模块。第一个 RetinaNet 在 X 光片中定位籽骨,第二个 RetinaNet 根据定位区域分级籽骨炎的严重程度。使用混淆矩阵和平均精度(AP)评估模型性能。
所提出的模型表现出有希望的分类性能,准确率为 92.7%,优于基础的 RetinaNet 模型。它实现了 81.8%的平均精度(mAP),表明具有卓越的目标检测能力。值得注意的是,每个严重程度类别的性能指标都有显著提高。
基于深度学习的方法可以准确地定位马的籽骨位置,并对籽骨炎的严重程度进行分级,提供相应的置信度评分。该方法有可能在临床环境中部署,改善马掌指(球节)关节 X 光片的诊断解读。此外,通过扩展训练数据集,该模型可能会学习协助诊断马其他骨骼区域的病变。