Suppr超能文献

基于实验的合成纤维绳索拉伸特性统计模型:一种机器学习方法。

Experimental-based statistical models for the tensile characterization of synthetic fiber ropes: a machine learning approach.

作者信息

Halabi Yahia, Xu Hu, Yu Zhixiang, Alhaddad Wael, Dreier Isabelle

机构信息

School of Civil Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.

Department of Structural Engineering, Tongji University, Shanghai, 200092, China.

出版信息

Sci Rep. 2023 Oct 18;13(1):17768. doi: 10.1038/s41598-023-44816-x.

Abstract

This study investigated the tensile behavior of some prevalent synthetic fiber ropes made of polyester, polypropylene, and nylon polymeric fibers. The aim was to generate well-documented experimental statistics and develop simplified stress-strain constitutive laws that can describe the ropes' tensile response. The methodology involved analyzing the thermal history of the fibers using the DSC technique, tensile testing of fibers and yarn components of the rope, and conducting 196 rope tensile tests with optimum testing conditions. Based on the test results, an experimental database of the ropes' tensile characteristics was established, containing different parameters of material properties, rope construction, fiber processing, fiber tensile properties, and rope tensile responses. Subsequently, ANN models were developed and optimized using MATLAB based on the generated dataset's inputs and outputs to predict the studied ropes' tri-linear stress-strain profiles. The results showed that the ANN models accurately predicted the stress-strain properties of ropes represented by the tri-linear approximation with an error of about 5% for the failure strength and strain. The study provides insight into the process-structure-property relationship of synthetic fiber ropes and contributes to minimizing the cost and effort in designing and predicting their tensile properties while contributing to the practical industry.

摘要

本研究调查了一些由聚酯、聚丙烯和尼龙聚合物纤维制成的常见合成纤维绳索的拉伸性能。目的是生成记录充分的实验统计数据,并开发能够描述绳索拉伸响应的简化应力-应变本构定律。该方法包括使用差示扫描量热法(DSC)技术分析纤维的热历史、对绳索的纤维和纱线组件进行拉伸测试,以及在最佳测试条件下进行196次绳索拉伸试验。基于测试结果,建立了绳索拉伸特性的实验数据库,其中包含材料性能、绳索结构、纤维加工、纤维拉伸性能和绳索拉伸响应的不同参数。随后,基于生成的数据集的输入和输出,使用MATLAB开发并优化了人工神经网络(ANN)模型,以预测所研究绳索的三线性应力-应变曲线。结果表明,ANN模型准确预测了由三线性近似表示的绳索的应力-应变特性,破坏强度和应变的误差约为5%。该研究深入了解了合成纤维绳索的工艺-结构-性能关系,有助于在设计和预测其拉伸性能时降低成本和工作量,同时为实际工业做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd01/10584856/ab6e3ebc63b7/41598_2023_44816_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验