Suppr超能文献

超分辨率芯片:一个能够对共培养物和三维系统进行超分辨率显微镜观察的平台。

Super-Resolution-Chip: an platform that enables super-resolution microscopy of co-cultures and 3D systems.

作者信息

Sade Ofir, Boneberg Ronja, Weiss Yifat, Beldjilali-Labro Megane, Leichtmann-Bardoogo Yael, Talpir Itay, Gottfried Irit, Ashery Uri, Rauti Rossana, Maoz Ben M

机构信息

School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.

Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.

出版信息

Biomed Opt Express. 2023 Sep 15;14(10):5223-5237. doi: 10.1364/BOE.498038. eCollection 2023 Oct 1.

Abstract

The development of organs-on-a-chip platforms has revolutionized cellular culture by allowing cells to be grown in an environment that better mimics human physiology. However, there is still a challenge in integrating those platforms with advanced imaging technology. This is extremely important when we want to study molecular changes and subcellular processes on the level of a single molecule using super-resolution microscopy (SRM), which has a resolution beyond the diffraction limit of light. Currently, existing platforms that include SRM have certain limitations, either as they only support 2D monocultures, without flow or as they demand a lot of production and handling. In this study, we developed a Super-Res-Chip platform, consisting of a 3D-printed chip and a porous membrane, that could be used to co-culture cells in close proximity either in 2D or in 3D while allowing SRM on both sides of the membrane. To demonstrate the functionality of the device, we co-cultured in endothelial and epithelial cells and used direct stochastic optical reconstruction microscopy (dSTORM) to investigate how glioblastoma cells affect the expression of the gap-junction protein Connexin43 in endothelial cells grown in 2D and in 3D. Cluster analysis of Connexin43 distribution revealed no difference in the number of clusters, their size, or radii, but did identify differences in their density. Furthermore, the spatial resolution was high also when the cells were imaged through the membrane (20-30 nm for x-y) and 10-20 nm when imaged directly both for 2D and 3D conditions. Overall, this chip allows to characterize of complex cellular processes on a molecular scale in an easy manner and improved the capacity for imaging in a single molecule resolution complex cellular organization.

摘要

芯片上的器官平台的发展彻底改变了细胞培养方式,使细胞能够在更接近人体生理的环境中生长。然而,将这些平台与先进的成像技术集成仍面临挑战。当我们想用超分辨率显微镜(SRM)在单分子水平上研究分子变化和亚细胞过程时,这一点极为重要,因为超分辨率显微镜的分辨率超越了光的衍射极限。目前,现有的包含超分辨率显微镜的平台存在一定局限性,要么仅支持二维单培养,没有流动条件,要么需要大量的制备和操作。在本研究中,我们开发了一种超分辨率芯片平台,它由一个3D打印芯片和一个多孔膜组成,可用于二维或三维近距离共培养细胞,同时允许在膜的两侧进行超分辨率显微镜成像。为了证明该设备的功能,我们共培养了内皮细胞和上皮细胞,并使用直接随机光学重建显微镜(dSTORM)来研究胶质母细胞瘤细胞如何影响二维和三维培养的内皮细胞中缝隙连接蛋白Connexin43的表达。Connexin43分布的聚类分析显示,聚类的数量、大小或半径没有差异,但确实发现了它们密度的差异。此外,当通过膜对细胞成像时,空间分辨率也很高(xy方向为20 - 30 nm),在二维和三维条件下直接成像时分辨率为10 - 20 nm。总体而言,该芯片能够以简便的方式在分子水平上表征复杂的细胞过程,并提高了以单分子分辨率对复杂细胞组织进行成像的能力。

相似文献

1
Super-Resolution-Chip: an platform that enables super-resolution microscopy of co-cultures and 3D systems.
Biomed Opt Express. 2023 Sep 15;14(10):5223-5237. doi: 10.1364/BOE.498038. eCollection 2023 Oct 1.
4
3D dSTORM imaging reveals novel detail of ryanodine receptor localization in rat cardiac myocytes.
J Physiol. 2019 Jan;597(2):399-418. doi: 10.1113/JP277360. Epub 2018 Nov 28.
5
Obtaining 3D super-resolution images by utilizing rotationally symmetric structures and 2D-to-3D transformation.
Comput Struct Biotechnol J. 2023 Feb 8;21:1424-1432. doi: 10.1016/j.csbj.2023.02.008. eCollection 2023.
6
Super-Resolution Imaging of Plasma Membrane Proteins with Click Chemistry.
Front Cell Dev Biol. 2016 Sep 9;4:98. doi: 10.3389/fcell.2016.00098. eCollection 2016.
8
Improvements in Maturity and Stability of 3D iPSC-Derived Hepatocyte-like Cell Cultures.
Cells. 2023 Sep 27;12(19):2368. doi: 10.3390/cells12192368.
9
Probing nano-organization of astroglia with multi-color super-resolution microscopy.
J Neurosci Res. 2017 Nov;95(11):2159-2171. doi: 10.1002/jnr.24026. Epub 2017 Feb 2.
10
Virtual-'light-sheet' single-molecule localisation microscopy enables quantitative optical sectioning for super-resolution imaging.
PLoS One. 2015 Apr 17;10(4):e0125438. doi: 10.1371/journal.pone.0125438. eCollection 2015.

引用本文的文献

2
A novel super-resolution microscopy platform for cutaneous alpha-synuclein detection in Parkinson's disease.
Front Mol Neurosci. 2024 Sep 4;17:1431549. doi: 10.3389/fnmol.2024.1431549. eCollection 2024.

本文引用的文献

1
Cx43 upregulation in HUVECs under stretch via TGF-β1 and cytoskeletal network.
Open Med (Wars). 2022 Mar 9;17(1):463-474. doi: 10.1515/med-2022-0432. eCollection 2022.
2
Spatial trans-epithelial electrical resistance (S-TEER) integrated in organs-on-chips.
Lab Chip. 2021 Dec 21;22(1):71-79. doi: 10.1039/d1lc00789k.
3
Brain-on-a-Chip: Characterizing the next generation of advanced platforms for modeling the central nervous system.
APL Bioeng. 2021 Jul 30;5(3):030902. doi: 10.1063/5.0055812. eCollection 2021 Sep.
4
Transforming a well into a chip: A modular 3D-printed microfluidic chip.
APL Bioeng. 2021 Apr 28;5(2):026103. doi: 10.1063/5.0039366. eCollection 2021 Jun.
5
Dual Channel Microfluidics for Mimicking the Blood-Brain Barrier.
ACS Nano. 2021 Feb 23;15(2):2984-2993. doi: 10.1021/acsnano.0c09263. Epub 2021 Jan 22.
6
Recent progress in translational engineered in vitro models of the central nervous system.
Brain. 2020 Dec 5;143(11):3181-3213. doi: 10.1093/brain/awaa268.
7
A microfluidic device for fixation and super-resolved mechanosensation studies of primary cilia.
Biomicrofluidics. 2019 Jan 25;13(1):014105. doi: 10.1063/1.5081756. eCollection 2019 Jan.
8
Gap junction protein Connexin-43 is a direct transcriptional regulator of N-cadherin in vivo.
Nat Commun. 2018 Sep 21;9(1):3846. doi: 10.1038/s41467-018-06368-x.
10
Smart Cell Culture Systems: Integration of Sensors and Actuators into Microphysiological Systems.
ACS Chem Biol. 2018 Jul 20;13(7):1767-1784. doi: 10.1021/acschembio.7b01029. Epub 2018 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验