Suppr超能文献

抗生素耐药性的一线希望:细菌通过抗生营养作用介导减轻四环素对植物的胁迫

The silver lining of antibiotic resistance: Bacterial-mediated reduction of tetracycline plant stress via antibiotrophy.

作者信息

Yagoubi Amira, Mahjoubi Yathreb, Giannakis Stefanos, Rzigui Touhami, Djebali Wahbi, Chouari Rakia

机构信息

University of Carthage, Laboratory of Plant Toxicology and Environmental Microbiology (LR18ES38), Faculty of Sciences of Bizerte, 7021, Bizerte, Tunisia; Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain.

University of Carthage, Laboratory of Plant Toxicology and Environmental Microbiology (LR18ES38), Faculty of Sciences of Bizerte, 7021, Bizerte, Tunisia.

出版信息

Plant Physiol Biochem. 2023 Nov;204:108093. doi: 10.1016/j.plaphy.2023.108093. Epub 2023 Oct 13.

Abstract

The reuse of water using effluents containing antibiotics from anthropogenic activities has been mainly linked to the development of antibiotic resistance. However, we report that the development of bacterial tolerance promotes plant growth. In the present study, we aimed to evaluate the efficiency of inoculation of a new antibiotic-degrading bacterium, Erwinia strain S9, in augmenting the tolerance of pea (Pisum sativum L.) plants to tetracycline (TET) (10 and 20 mg/L). Physiological parameters such as tissue elongation and biomass, as well as relative water content, were remarkably lower in plants exposed to TET than in the control. The inhibitory effects of TET were associated with reduced CO assimilation, stomatal conductance, transpiration, dark respiration, and light saturation point (LSP). High concentrations of TET-induced oxidative stress are attested by the overproduction of superoxide radicals (O), hydrogen peroxide (HO), and hydroxyl radicals (HO), resulting in increased malondialdehyde content and cell death. The high activity of antioxidant enzymes such as catalase, ascorbate peroxidase, and guaiacol peroxidase validated the proposed mechanism. Under TET stress conditions, supplementation with Erwinia strain S9 was beneficial to pea plants through osmotic adjustment, increased nutrient uptake, gas exchange optimization, and increased antioxidant activities. Its presence not only ensures plant survival and growth during antibiotic stress but also degrades TET via significant antibiotrophy. This strategy is a cost-effective environmental chemical engineering tool that can be used to depollute wastewater or to improve crop resistance in rhizofiltration treatment when treated wastewater is reused for irrigation.

摘要

利用来自人为活动的含抗生素废水进行水的再利用主要与抗生素耐药性的发展有关。然而,我们报告称细菌耐受性的发展促进了植物生长。在本研究中,我们旨在评估接种一种新的抗生素降解细菌欧文氏菌菌株S9增强豌豆(Pisum sativum L.)植株对四环素(TET)(10和20毫克/升)耐受性的效率。与对照相比,暴露于TET的植株中诸如组织伸长和生物量以及相对含水量等生理参数显著更低。TET的抑制作用与CO同化、气孔导度、蒸腾作用、暗呼吸和光饱和点(LSP)降低有关。高浓度TET诱导的氧化应激通过超氧自由基(O)、过氧化氢(HO)和羟基自由基(HO)的过量产生得到证实,导致丙二醛含量增加和细胞死亡。过氧化氢酶、抗坏血酸过氧化物酶和愈创木酚过氧化物酶等抗氧化酶的高活性证实了所提出的机制。在TET胁迫条件下,添加欧文氏菌菌株S9通过渗透调节、增加养分吸收、优化气体交换和提高抗氧化活性对豌豆植株有益。它的存在不仅确保了植物在抗生素胁迫期间的存活和生长,还通过显著的抗微生物作用降解TET。这种策略是一种具有成本效益的环境化学工程工具,可用于净化废水或在将处理后的废水用于灌溉的根际过滤处理中提高作物抗性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验