Suppr超能文献

大气湍流环境下拼接镜活塞误差传感研究

Research on piston error sensing for segmented mirrors under atmospheric turbulence.

作者信息

Wang Bin, Jin Zhenyu, Dai Yichun, Yang DeHua, Xu FangYu

出版信息

Opt Express. 2023 Sep 25;31(20):33719-33731. doi: 10.1364/OE.503337.

Abstract

Large aperture ground-based segmented telescopes typically use electrical edge sensors to detect co-phase errors. However, complex observing environments can lead to zero-point drift of the edge sensors, making it challenging to maintain the long-term co-phase of the segmented primary mirror using only edge sensors. Therefore, employing optical piston error detection methods for short-term calibration of edge sensors can address the issue of zero-point drift in the sensors. However, atmospheric turbulence can affect calibration accuracy based on the observational target. To achieve high-precision calibration of electrical edge sensors, this study investigates the impact of atmospheric turbulence on optical piston error detection. Based on simulated results, it is found that the actual measured piston error in the presence of atmospheric turbulence is the difference between the average phases of the two segments. Subsequently, optical piston error detection experiments were conducted in a segmented mirror system under simulated turbulent conditions with varying turbulence intensities. Experimental studies have shown that the detection accuracy of the optical method is almost the same as without turbulence when using a detection aperture size that is 0.82 times the atmospheric coherence length and an exposure time of at least 40 ms. The root mean square of the cross-calibration is better than 3 nm. These experimental results indicate that under conditions of good atmospheric seeing, the optical piston error detection method can meet the short-term calibration requirements of edge sensors by setting reasonable detection area size and exposure time. It may even be possible to directly use optical detection methods to replace edge sensors for real-time detection of piston errors.

摘要

大口径地基拼接望远镜通常使用电边缘传感器来检测共相误差。然而,复杂的观测环境会导致边缘传感器的零点漂移,使得仅使用边缘传感器来维持拼接主镜的长期共相变得具有挑战性。因此,采用光学活塞误差检测方法对边缘传感器进行短期校准可以解决传感器中的零点漂移问题。然而,大气湍流会基于观测目标影响校准精度。为了实现电边缘传感器的高精度校准,本研究调查了大气湍流对光学活塞误差检测的影响。基于模拟结果,发现在存在大气湍流的情况下实际测量的活塞误差是两段平均相位之间的差值。随后,在具有不同湍流强度的模拟湍流条件下,在拼接镜系统中进行了光学活塞误差检测实验。实验研究表明,当使用大小为大气相干长度0.82倍的检测孔径和至少40毫秒的曝光时间时,光学方法的检测精度与无湍流时几乎相同。交叉校准的均方根优于3纳米。这些实验结果表明,在大气视宁度良好的条件下,光学活塞误差检测方法通过设置合理的检测区域大小和曝光时间可以满足边缘传感器的短期校准要求。甚至有可能直接使用光学检测方法来替代边缘传感器进行活塞误差的实时检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验