Suppr超能文献

了解居家痴呆症护理中对非接触式监测技术的接受情况:一项针对非正式照料者的横断面调查研究

Understanding acceptance of contactless monitoring technology in home-based dementia care: a cross-sectional survey study among informal caregivers.

作者信息

Wrede Christian, Braakman-Jansen Annemarie, van Gemert-Pijnen Lisette

机构信息

Centre for eHealth and Wellbeing Research, Department of Psychology, Health & Technology, University of Twente, Enschede, Netherlands.

出版信息

Front Digit Health. 2023 Oct 4;5:1257009. doi: 10.3389/fdgth.2023.1257009. eCollection 2023.

Abstract

BACKGROUND

There is a growing interest to support home-based dementia care via contactless monitoring (CM) technologies which do not require any body contact, and allow informal caregivers to remotely monitor the health and safety of people with dementia (PwD). However, sustainable implementation of CM technologies requires a better understanding of informal caregivers' acceptance. This study aimed to examine the (1) general acceptance of CM technology for home-based dementia care, (2) acceptance of different sensor types and use scenarios, and (3) differences between accepters and refusers of CM technology.

METHOD

A cross-sectional online survey was conducted among  = 304 informal caregivers of community-dwelling PwD [Mean(SD) age = 58.5 (10.7)] in the Netherlands and Germany. The survey contained a textual and graphical introduction to CM technologies, as well as questions targeting (1) general acceptance of CM technology, (2) acceptance of seven different contactless sensor types, (3) acceptance of five different use scenarios, and (4) caregivers' own and their care recipients' personal characteristics. Data were examined using descriptive and bivariate analyses.

RESULTS

Participants' general acceptance of CM technology was slightly positive. We found significant differences in acceptability between contactless sensor types ( < .001). RF-based sensors (e.g., radar) and light sensors were considered most acceptable, whereas camera-based sensors and audio sensors (e.g., microphones, smart speakers) were seen as least acceptable for home-based dementia care. Furthermore, participants' acceptance of different use scenarios for CM technology varied significantly ( < .001). The intention to use CM technology was highest for detecting emergencies (e.g., falls, wandering), and lowest for predicting acute situations (e.g., fall prediction). Lastly, accepters and refusers of CM technology significantly differed regarding gender ( = .010), their relation with the PwD ( = .003), eHealth literacy ( = .025), personal innovativeness ( < .001), usage of safety technology ( = .002), and the PwD's type of cognitive impairment ( = .035) and housing situation ( = .023).

CONCLUSION

Our findings can inform the development and implementation of acceptable CM technology to support home-based dementia care. Specifically, we show which sensor types and use scenarios should be prioritized from the informal caregiver's view. Additionally, our study highlights several personal characteristics associated with informal caregivers' acceptance of CM technology that should be taken into account during implementation.

摘要

背景

通过非接触式监测(CM)技术支持居家痴呆症护理的兴趣日益浓厚,该技术无需任何身体接触,允许非正式护理人员远程监测痴呆症患者(PwD)的健康和安全。然而,CM技术的可持续实施需要更好地理解非正式护理人员的接受度。本研究旨在探讨:(1)CM技术在居家痴呆症护理中的总体接受度;(2)对不同传感器类型和使用场景的接受度;(3)CM技术接受者和拒绝者之间的差异。

方法

对荷兰和德国304名社区居住的PwD的非正式护理人员[平均(标准差)年龄 = 58.5(10.7)岁]进行了横断面在线调查。该调查包含CM技术的文字和图形介绍,以及针对以下方面的问题:(1)CM技术的总体接受度;(2)对七种不同非接触式传感器类型的接受度;(3)对五种不同使用场景的接受度;(4)护理人员自身及其护理对象的个人特征。使用描述性和双变量分析对数据进行检查。

结果

参与者对CM技术的总体接受度略呈积极态度。我们发现非接触式传感器类型之间的可接受性存在显著差异(P <.001)。基于射频的传感器(如雷达)和光传感器被认为最可接受,而基于摄像头的传感器和音频传感器(如麦克风、智能音箱)被视为居家痴呆症护理中最不可接受的。此外,参与者对CM技术不同使用场景的接受度差异显著(P <.001)。使用CM技术检测紧急情况(如跌倒、走失)的意愿最高,预测急性情况(如跌倒预测)的意愿最低。最后,CM技术的接受者和拒绝者在性别(P = 0.010)、与PwD的关系(P = 0.003)、电子健康素养(P = 0.025)、个人创新性(P <.001)、安全技术使用情况(P = 0.002)以及PwD的认知障碍类型(P = 0.035)和居住状况(P = 0.023)方面存在显著差异。

结论

我们的研究结果可为支持居家痴呆症护理的可接受CM技术的开发和实施提供参考。具体而言,我们从非正式护理人员的角度表明了应优先考虑哪些传感器类型和使用场景。此外,我们的研究突出了与非正式护理人员对CM技术接受度相关的几个个人特征,在实施过程中应予以考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1489/10582629/12aad803bf70/fdgth-05-1257009-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验