Oliver Christopher, Mukherjee Sebabrata, Rechstman Mikael C, Carusotto Iacopo, Price Hannah M
School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
Department of Physics, Indian Institute of Science, Bangalore 560012, India.
Sci Adv. 2023 Oct 20;9(42):eadj0360. doi: 10.1126/sciadv.adj0360.
We extend the mapping of time-dependent paraxial optics by engineering a synthetic magnetic vector potential, leading to a nontrivial band topology. We consider an inhomogeneous 1D array of coupled optical waveguides and show that the wave equation describing paraxial propagation of optical pulses can be recast as a Schrödinger equation, including a synthetic magnetic field whose strength can be controlled via the spatial gradient of the waveguide properties across the array. We use an experimentally motivated model of a laser-written array to demonstrate that this synthetic magnetic field can be engineered in realistic setups and can produce interesting physics such as cyclotron motion, a controllable Hall drift of the pulse in space or time, and propagation in chiral edge states. These results substantially extend the physics that can be explored within propagating geometries and pave the way for higher-dimensional topological physics and strongly correlated fluids of light.
我们通过设计一个合成磁矢势来扩展含时傍轴光学的映射,从而得到一个非平凡的能带拓扑结构。我们考虑一个耦合光波导的非均匀一维阵列,并表明描述光脉冲傍轴传播的波动方程可以重写为一个薛定谔方程,其中包括一个合成磁场,其强度可以通过阵列中波导特性的空间梯度来控制。我们使用一个受实验启发的激光写入阵列模型来证明,这种合成磁场可以在实际装置中实现,并能产生有趣的物理现象,如回旋运动、脉冲在空间或时间上可控的霍尔漂移以及在手性边缘态中的传播。这些结果极大地扩展了在传播几何结构中可以探索的物理内容,并为高维拓扑物理和强关联光流体铺平了道路。