Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea.
Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea.
Chemosphere. 2023 Dec;345:140494. doi: 10.1016/j.chemosphere.2023.140494. Epub 2023 Oct 18.
Nitrogen (N) removal from wastewater is essential, but it a process that demands a substantial amount of energy. Therefore, there is an urgent need to develop treatment processes that can conserve and use energy effectively. This study investigated the potential of a single chamber bio-electrochemical system (BES) for ammonium (NH) removal. Various NH:NO ratios (1:1, 1:0.5, and 1:0) were tested at an applied potential of 0.4 V vs. Ag/AgCl. Potential in the reactors (R-1, R-2, and R-3) significantly improved NH removal efficiencies. Specifically, R-1, R-2, and R-3 exhibited removal efficiencies of 68.12%, 64.22%, and 57.86%, respectively. NH oxidation in R-3 involved using a carbon brush electrode as an electron acceptor. Significant electric charge generation was observed in all reactors (R-1, R-2, and R-3) during NH removal. Particularly, the use of a carbon brush as an electron acceptor in R-3 resulted in higher electric charge generation compared to those in R-1 and R-2, where NO served as an electron acceptor. Upon NH removal and concurrent electric charge generation, nitrate (NO) accumulation was observed in reactors with applied potential (R-1, R-2, and R-3), demonstrating greater accumulation compared to reactors without potential (R-7, R-8, and R-9). The mechanism involves ammonium oxidizing bacteria (AOB) oxidizing NH to NO, which is then further oxidized by nitrite-oxidizing bacteria (NOB) to NO. ANAMMOX bacteria could directly produce N from NH and NO or NH could be oxidized to N through extracellular electron transfer (EET). A carbon brush electron acceptor reduces NO requirement by 1.65 g while enhancing NH oxidation efficiency. This study demonstrates the potential of mixed culture ANAMMOX granules for efficient NO-free NH removal.
从废水中去除氮(N)是必不可少的,但这是一个需要大量能源的过程。因此,迫切需要开发能够有效节约和利用能源的处理工艺。本研究调查了单室生物电化学系统(BES)去除铵(NH)的潜力。在 0.4 V vs. Ag/AgCl 的施加电势下,测试了各种 NH:NO 比(1:1、1:0.5 和 1:0)。反应器(R-1、R-2 和 R-3)中的电势显著提高了 NH 去除效率。具体而言,R-1、R-2 和 R-3 的去除效率分别为 68.12%、64.22%和 57.86%。R-3 中 NH 的氧化涉及使用碳纤维刷电极作为电子受体。在所有反应器(R-1、R-2 和 R-3)中都观察到在 NH 去除过程中产生了大量的电荷量。特别是,在 R-3 中使用碳纤维刷作为电子受体时,与 R-1 和 R-2 相比,电子受体为 NO 时,产生的电荷量更高。在 NH 去除和同时产生电荷量的情况下,在施加电势的反应器(R-1、R-2 和 R-3)中观察到硝酸盐(NO)积累,与没有电势的反应器(R-7、R-8 和 R-9)相比,积累更多。该机制涉及氨氧化细菌(AOB)将 NH 氧化为 NO,然后由亚硝酸盐氧化细菌(NOB)将其进一步氧化为 NO。ANAMMOX 细菌可以直接将 NH 和 NO 转化为 N,或者通过细胞外电子转移(EET)将 NH 氧化为 N。碳纤维刷电子受体减少了 1.65 g 的 NO 需求,同时提高了 NH 氧化效率。本研究证明了混合培养 ANAMMOX 颗粒在高效去除无氮 NH 方面的潜力。