State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
China National Botanical Garden, Beijing, China.
Ecol Lett. 2024 Jan;27(1):e14330. doi: 10.1111/ele.14330. Epub 2023 Oct 22.
The associations of arbuscular mycorrhizal (AM) or ectomycorrhiza (EcM) fungi with plants have sequentially evolved and significantly contributed to enhancing plant nutrition. Nonetheless, how evolutionary and ecological forces drive nutrient acquisition strategies of AM and EcM woody plants remains poorly understood. Our global analysis of woody species revealed that, over divergence time, AM woody plants evolved faster nitrogen mineralization rates without changes in nitrogen resorption. However, EcM woody plants exhibited an increase in nitrogen mineralization but a decrease in nitrogen resorption, indicating a shift towards a more inorganic nutrient economy. Despite this alteration, when evaluating present-day woody species, AM woody plants still display faster nitrogen mineralization and lower nitrogen resorption than EcM woody plants. This inorganic nutrient economy allows AM woody plants to thrive in warm environments with a faster litter decomposition rate. Our findings indicate that the global pattern of nutrient acquisition strategies in mycorrhizal plants is shaped by the interplay between phylogeny and climate.
丛枝菌根(AM)或外生菌根(EcM)真菌与植物的共生关系依次进化,并显著促进了植物的营养吸收。然而,进化和生态力量如何驱动 AM 和 EcM 木本植物的养分获取策略仍知之甚少。我们对木本物种的全球分析表明,在分化时间内,AM 木本植物的氮矿化速率进化得更快,而氮的再吸收没有变化。然而,EcM 木本植物的氮矿化增加,氮的再吸收减少,表明它们向更无机的养分经济转变。尽管发生了这种变化,但在评估现今的木本物种时,AM 木本植物的氮矿化仍然比 EcM 木本植物更快,氮的再吸收也更低。这种无机养分经济使 AM 木本植物能够在温暖的环境中茁壮成长,因为温暖的环境中凋落物分解速度更快。我们的研究结果表明,共生植物养分获取策略的全球模式是由系统发育和气候之间的相互作用形成的。