Department of Biology, San Francisco State University, San Francisco, California, United States of America.
Department of Biology, Stanford University, Stanford, California, United States of America.
PLoS Genet. 2023 Oct 23;19(10):e1010776. doi: 10.1371/journal.pgen.1010776. eCollection 2023 Oct.
Sinorhizobium meliloti is a model alpha-proteobacterium for investigating microbe-host interactions, in particular nitrogen-fixing rhizobium-legume symbioses. Successful infection requires complex coordination between compatible host and endosymbiont, including bacterial production of succinoglycan, also known as exopolysaccharide-I (EPS-I). In S. meliloti EPS-I production is controlled by the conserved ExoS-ChvI two-component system. Periplasmic ExoR associates with the ExoS histidine kinase and negatively regulates ChvI-dependent expression of exo genes, necessary for EPS-I synthesis. We show that two extracytoplasmic proteins, LppA (a lipoprotein) and JspA (a lipoprotein and a metalloprotease), jointly influence EPS-I synthesis by modulating the ExoR-ExoS-ChvI pathway and expression of genes in the ChvI regulon. Deletions of jspA and lppA led to lower EPS-I production and competitive disadvantage during host colonization, for both S. meliloti with Medicago sativa and S. medicae with M. truncatula. Overexpression of jspA reduced steady-state levels of ExoR, suggesting that the JspA protease participates in ExoR degradation. This reduction in ExoR levels is dependent on LppA and can be replicated with ExoR, JspA, and LppA expressed exogenously in Caulobacter crescentus and Escherichia coli. Akin to signaling pathways that sense extracytoplasmic stress in other bacteria, JspA and LppA may monitor periplasmic conditions during interaction with the plant host to adjust accordingly expression of genes that contribute to efficient symbiosis. The molecular mechanisms underlying host colonization in our model system may have parallels in related alpha-proteobacteria.
根瘤农杆菌是一种用于研究微生物-宿主相互作用的模式α-变形菌,特别是固氮根瘤菌-豆科植物共生体。成功的感染需要宿主和内共生体之间的复杂协调,包括细菌产生结瘤多糖,也称为胞外多糖-I(EPS-I)。在 S. meliloti 中,EPS-I 的产生受保守的 ExoS-ChvI 双组分系统控制。周质 ExoR 与 ExoS 组氨酸激酶结合,并负调控 ChvI 依赖性外基因表达,这对于 EPS-I 合成是必需的。我们表明,两种细胞外蛋白,LppA(脂蛋白)和 JspA(脂蛋白和金属蛋白酶),通过调节 ExoR-ExoS-ChvI 途径和 ChvI 调控子中基因的表达,共同影响 EPS-I 的合成。jspA 和 lppA 的缺失导致 EPS-I 产量降低,并在宿主定植过程中竞争劣势,无论是 S. meliloti 与 Medicago sativa 还是 S. medicae 与 M. truncatula。JspA 的过表达降低了 ExoR 的稳态水平,表明 JspA 蛋白酶参与了 ExoR 的降解。这种 ExoR 水平的降低依赖于 LppA,并且可以在 Caulobacter crescentus 和 Escherichia coli 中通过 ExoR、JspA 和 LppA 外源表达来复制。类似于其他细菌中感知细胞外应激的信号通路,JspA 和 LppA 可能会监测与植物宿主相互作用时的周质条件,以相应地调整有助于有效共生的基因表达。我们模型系统中宿主定植的分子机制可能与相关的α-变形菌有相似之处。