Guo Xingmei, Shi Jing, Li Ming, Zhang Junhao, Zheng Xiangjun, Liu Yuanjun, Xi Baojuan, An Xuguang, Duan Zhongyao, Fan Qianqian, Gao Fei, Xiong Shenglin
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China.
School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.
Angew Chem Int Ed Engl. 2023 Dec 4;62(49):e202314124. doi: 10.1002/anie.202314124. Epub 2023 Nov 6.
Constructing atom-clusters (ACs) with in situ modulation of coordination environment and simultaneously hollowing carbon support are critical yet challenging for improving electrocatalytic efficiency of atomically dispersed catalysts (ADCs). Herein, a general diffusion-controlled strategy based on spatial confining and Kirkendall effect is proposed to construct metallic ACs in N,P,S triply-doped hollow carbon matrix (M /NPS-HC, M=Mn, Fe, Co, Ni, Cu). Thereinto, Fe /NPS-HC with the best catalytic activity for oxygen reduction reaction (ORR) is thoroughly investigated. Unlike the benchmark sample of symmetrical N-surrounded iron single-atoms in N-doped carbon (Fe /N-C), Fe /NPS-HC comprises bi-/tri-atomic Fe centers with engineered S/N coordination. Theoretical calculation reveals that proper Fe gathering and coordination modulation could mildly delocalize the electron distribution and optimize the free energy pathways of ORR. In addition, the triple doping and hollow structure of carbon matrix could further regulate the local environment and allow sufficient exposure of active sites, resulting in more enhanced ORR kinetics on Fe /NPS-HC. The zinc-air battery assembled with Fe /NPS-HC as cathodic catalyst exhibits all-round superiority to Pt/C and most Fe-based ADCs. This work provides an exemplary method for establishing atomic-cluster catalysts with engineered S-dominated coordination and hollowed carbon matrix, which paves a new avenue for the fabrication and optimization of advanced ADCs.
构建具有配位环境原位调制且同时使碳载体中空的原子簇(ACs)对于提高原子分散催化剂(ADCs)的电催化效率至关重要但具有挑战性。在此,提出了一种基于空间限制和柯肯达尔效应的通用扩散控制策略,以在N、P、S三掺杂中空碳基体(M/NPS-HC,M = Mn、Fe、Co、Ni、Cu)中构建金属ACs。其中,对氧还原反应(ORR)具有最佳催化活性的Fe/NPS-HC进行了深入研究。与氮掺杂碳中对称N包围的铁单原子的基准样品(Fe/N-C)不同,Fe/NPS-HC包含具有工程化S/N配位的双原子/三原子Fe中心。理论计算表明,适当的Fe聚集和配位调制可以适度离域电子分布并优化ORR的自由能路径。此外,碳基体的三掺杂和中空结构可以进一步调节局部环境并使活性位点充分暴露,从而在Fe/NPS-HC上实现更强的ORR动力学。以Fe/NPS-HC作为阴极催化剂组装的锌空气电池表现出全面优于Pt/C和大多数铁基ADCs的性能。这项工作为建立具有工程化S主导配位和中空碳基体的原子簇催化剂提供了一种示例性方法,为先进ADCs的制备和优化开辟了一条新途径。