Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
Department of Biology, Stanford University, Stanford, CA, 94305, USA.
New Phytol. 2023 Dec;240(6):2197-2203. doi: 10.1111/nph.19328. Epub 2023 Oct 23.
During photosynthesis, electron transport reactions generate and shuttle reductant to allow CO reduction by the Calvin-Benson-Bassham cycle and the formation of biomass building block in the so-called linear electron flow (LEF). However, in nature, environmental parameters like light intensity or CO availability can vary and quickly change photosynthesis rates, creating an imbalance between photosynthetic energy production and metabolic needs. In addition to LEF, alternative photosynthetic electron flows are central to allow photosynthetic energy to match metabolic demand in response to environmental variations. Microalgae arguably harbour one of the most diverse set of alternative electron flows (AEFs), including cyclic (CEF), pseudocyclic (PCEF) and chloroplast-to-mitochondria (CMEF) electron flow. While CEF, PCEF and CMEF have large functional overlaps, they differ in the conditions they are active and in their role for photosynthetic energy balance. Here, I review the molecular mechanisms of CEF, PCEF and CMEF in microalgae. I further propose a quantitative framework to compare their key physiological roles and quantify how the photosynthetic energy is partitioned to maintain a balanced energetic status of the cell. Key differences in AEF within the green lineage and the potential of rewiring photosynthetic electrons to enhance plant robustness will be discussed.
在光合作用过程中,电子传递反应产生并传递还原剂,以使卡尔文-本森-巴斯汉姆循环(Calvin-Benson-Bassham cycle)还原 CO 并形成生物量构建块,这就是所谓的线性电子流(linear electron flow,LEF)。然而,在自然界中,光照强度或 CO 可用性等环境参数可能会发生变化,并迅速改变光合作用速率,从而在光合产能和代谢需求之间造成不平衡。除了 LEF,替代光合作用电子流(alternative photosynthetic electron flow,AEF)对于使光合作用能量与代谢需求相匹配以适应环境变化也很重要。藻类可能拥有最多样化的替代电子流(alternative electron flow,AEF)集合之一,包括循环(cyclic,CEF)、拟循环(pseudocyclic,PCEF)和叶绿体-线粒体(chloroplast-to-mitochondria,CMEF)电子流。虽然 CEF、PCEF 和 CMEF 具有很大的功能重叠,但它们在活性条件和对光合能量平衡的作用方面存在差异。在这里,我综述了藻类中 CEF、PCEF 和 CMEF 的分子机制。我进一步提出了一个定量框架来比较它们的关键生理作用,并量化如何分配光合能量以维持细胞的能量平衡状态。还将讨论绿藻系中 AEF 的关键差异以及重新布线光合作用电子以增强植物稳健性的潜力。