Sahoo Sarthak, Ramu Soundharya, Nair Madhumathy G, Pillai Maalavika, San Juan Beatriz P, Milioli Heloisa Zaccaron, Mandal Susmita, Naidu Chandrakala M, Mavatkar Apoorva D, Subramaniam Harini, Neogi Arpita G, Chaffer Christine L, Prabhu Jyothi S, Somarelli Jason A, Jolly Mohit Kumar
Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India.
Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560012, India.
bioRxiv. 2023 Oct 2:2023.09.30.558960. doi: 10.1101/2023.09.30.558960.
Intra-tumoral phenotypic heterogeneity promotes tumor relapse and therapeutic resistance and remains an unsolved clinical challenge. It manifests along multiple phenotypic axes and decoding the interconnections among these different axes is crucial to understand its molecular origins and to develop novel therapeutic strategies to control it. Here, we use multi-modal transcriptomic data analysis - bulk, single-cell and spatial transcriptomics - from breast cancer cell lines and primary tumor samples, to identify associations between epithelial-mesenchymal transition (EMT) and luminal-basal plasticity - two key processes that enable heterogeneity. We show that luminal breast cancer strongly associates with an epithelial cell state, but basal breast cancer is associated with hybrid epithelial/mesenchymal phenotype(s) and higher phenotypic heterogeneity. These patterns were inherent in methylation profiles, suggesting an epigenetic crosstalk between EMT and lineage plasticity in breast cancer. Mathematical modelling of core underlying gene regulatory networks representative of the crosstalk between the luminal-basal and epithelial-mesenchymal axes recapitulate and thus elucidate mechanistic underpinnings of the observed associations from transcriptomic data. Our systems-based approach integrating multi-modal data analysis with mechanism-based modeling offers a predictive framework to characterize intra-tumor heterogeneity and to identify possible interventions to restrict it.
肿瘤内表型异质性促进肿瘤复发和治疗抵抗,仍然是一个未解决的临床挑战。它沿着多个表型轴表现出来,解读这些不同轴之间的相互联系对于理解其分子起源以及开发控制它的新治疗策略至关重要。在这里,我们使用来自乳腺癌细胞系和原发性肿瘤样本的多模态转录组数据分析——批量、单细胞和空间转录组学,来确定上皮-间质转化(EMT)和管腔-基底可塑性之间的关联——这是两个导致异质性的关键过程。我们表明,管腔型乳腺癌与上皮细胞状态密切相关,但基底型乳腺癌与混合上皮/间质表型及更高的表型异质性相关。这些模式在甲基化谱中是固有的,表明乳腺癌中EMT和谱系可塑性之间存在表观遗传串扰。代表管腔-基底和上皮-间质轴之间串扰的核心潜在基因调控网络的数学建模概括并因此阐明了从转录组数据中观察到的关联的机制基础。我们基于系统的方法将多模态数据分析与基于机制的建模相结合,提供了一个预测框架,以表征肿瘤内异质性并确定限制它的可能干预措施。