Cooperative Institute for Marine and Atmospheric Research, Research Corporation of the University of Hawai'i, Honolulu, Hawaii 96822, USA.
Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA.
J Acoust Soc Am. 2023 Oct 1;154(4):2579-2593. doi: 10.1121/10.0021972.
Passive acoustic monitoring is widely used for detection and localization of marine mammals. Typically, pressure sensors are used, although several studies utilized acoustic vector sensors (AVSs), that measure acoustic pressure and particle velocity and can estimate azimuths to acoustic sources. The AVSs can localize sources using a reduced number of sensors and do not require precise time synchronization between sensors. However, when multiple animals are calling concurrently, automated tracking of individual sources still poses a challenge, and manual methods are typically employed to link together sequences of measurements from a given source. This paper extends the method previously reported by Tenorio-Hallé, Thode, Lammers, Conrad, and Kim [J. Acoust. Soc. Am. 151(1), 126-137 (2022)] by employing and comparing two fully-automated approaches for azimuthal tracking based on the AVS data. One approach is based on random finite set statistics and the other on message passing algorithms, but both approaches utilize the underlying Bayesian statistical framework. The proposed methods are tested on several days of AVS data obtained off the coast of Maui and results show that both approaches successfully and efficiently track multiple singing humpback whales. The proposed methods thus made it possible to develop a fully-automated AVS tracking approach applicable to all species of baleen whales.
被动声学监测被广泛用于海洋哺乳动物的检测和定位。通常使用压力传感器,尽管有几项研究利用了声学矢量传感器 (AVS),它可以测量声压和质点速度,并能估计声源的方位。AVS 可以使用较少的传感器来定位声源,并且不需要传感器之间的精确时间同步。然而,当多个动物同时发声时,自动跟踪单个声源仍然具有挑战性,通常采用手动方法将给定声源的测量序列连接起来。本文扩展了 Tenorio-Hallé、Thode、Lammers、Conrad 和 Kim 之前报道的方法[J. Acoust. Soc. Am. 151(1), 126-137 (2022)],通过使用和比较两种基于 AVS 数据的全自动方位跟踪方法。一种方法基于随机有限集统计,另一种方法基于消息传递算法,但两种方法都利用了基本的贝叶斯统计框架。所提出的方法在毛伊岛海岸附近获得的几天 AVS 数据上进行了测试,结果表明这两种方法都成功有效地跟踪了多个唱歌的座头鲸。因此,所提出的方法使得开发一种适用于所有须鲸物种的全自动 AVS 跟踪方法成为可能。