Koishi Ayumi, Lee Sang Soo, Fenter Paul, Fernandez-Martinez Alejandro, Bourg Ian C
Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States.
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.
J Phys Chem C Nanomater Interfaces. 2022 Sep 20;126(38):16447-16460. doi: 10.1021/acs.jpcc.2c04751. eCollection 2022 Sep 29.
The stability of adsorbed water films on mineral surfaces has far-reaching implications in the Earth, environmental, and materials sciences. Here, we use the basal plane of phlogopite mica, an atomically smooth surface of a natural mineral, to investigate water film structure and stability as a function of two features that modulate surface hydrophilicity: the type of adsorbed counterions (Na, K, and Cs) and the substitution of structural OH groups by F atoms. We use molecular dynamics simulations combined with in situ high-resolution X-ray reflectivity to examine surface hydration over a range of water loadings, from the adsorption of isolated water molecules to the formation of clusters and films. We identify four regimes characterized by distinct adsorption energetics and different sensitivities to cation type and mineral fluorination: from 0 to 0.5 monolayer film thickness, the hydration of adsorbed ions; from 0.5 to 1 monolayer, the hydration of uncharged regions of the siloxane surface; from 1 to 1.5 monolayer, the attachment of isolated water molecules on the surface of the first monolayer; and for >1.5 monolayer, the formation of an incipient electrical double layer at the mineral-water interface.
矿物表面吸附水膜的稳定性在地球科学、环境科学和材料科学中具有深远影响。在此,我们利用金云母的基面(一种天然矿物的原子级光滑表面)来研究水膜结构及其稳定性,该稳定性是作为调节表面亲水性的两个特征的函数:吸附抗衡离子的类型(Na、K和Cs)以及结构OH基团被F原子取代的情况。我们结合分子动力学模拟和原位高分辨率X射线反射率,在一系列水负载量范围内研究表面水合作用,从孤立水分子的吸附到团簇和薄膜的形成。我们确定了四个区域,其特征在于不同的吸附能量以及对阳离子类型和矿物氟化的不同敏感性:从0到0.5单层膜厚度,为吸附离子的水合作用;从0.5到1单层,为硅氧烷表面不带电区域的水合作用;从1到1.5单层,为孤立水分子附着在第一层表面;对于大于1.5单层,为在矿物 - 水界面处形成初始双电层。