Suppr超能文献

预测 COVID-19 导致高原地区 ARDS 患者院内死亡率的模型。

Prediction model for in-hospital mortality in patients at high altitudes with ARDS due to COVID-19.

机构信息

Critical and Intensive Care Medicine, Hospital Universitario Mayor-Méderi, Bogotá, Colombia.

Grupo de Investigación Clínica, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.

出版信息

PLoS One. 2023 Oct 26;18(10):e0293476. doi: 10.1371/journal.pone.0293476. eCollection 2023.

Abstract

INTRODUCTION

The diagnosis of acute respiratory distress syndrome (ARDS) includes the ratio of pressure arterial oxygen and inspired oxygen fraction (P/F) ≤ 300, which is often adjusted in locations more than 1,000 meters above sea level (masl) due to hypobaric hypoxemia. The main objective of this study was to develop a prediction model for in-hospital mortality among patients with ARDS due to coronavirus disease 2019 (COVID-19) (C-ARDS) at 2,600 masl with easily available variables at patient admission and to compare its discrimination capacity with a second model using the P/F adjusted for this high altitude.

METHODS

This study was an analysis of data from patients with C-ARDS treated between March 2020 and July 2021 in a university hospital located in the city of Bogotá, Colombia, at 2,600 masl. Demographic and laboratory data were extracted from electronic records. For the prediction model, univariate analyses were performed to screen variables with p <0.25. Then, these variables were automatically selected with a backward stepwise approach with a significance level of 0.1. The interaction terms and fractional polynomials were also examined in the final model. Multiple imputation procedures and bootstraps were used to obtain the coefficients with the best external validation. In addition, total adjustment of the model and logistic regression diagnostics were performed. The same methodology was used to develop a second model with the P/F adjusted for altitude. Finally, the areas under the curve (AUCs) of the receiver operating characteristic (ROC) curves of the two models were compared.

RESULTS

A total of 2,210 subjects were included in the final analysis. The final model included 11 variables without interaction terms or nonlinear functions. The coefficients are presented excluding influential observations. The final equation for the model fit was g(x) = age(0.04819)+weight(0.00653)+height(-0.01856)+haemoglobin(-0.0916)+platelet count(-0.003614)+ creatinine(0.0958)+lactate dehydrogenase(0.001589)+sodium(-0.02298)+potassium(0.1574)+systolic pressure(-0.00308)+if moderate ARDS(0.628)+if severe ARDS(1.379), and the probability of in-hospital death was p (x) = e g (x)/(1+ e g (x)). The AUC of the ROC curve was 0.7601 (95% confidence interval (CI) 0.74-0, 78). The second model with the adjusted P/F presented an AUC of 0.754 (95% CI 0.73-0.77). No statistically significant difference was found between the AUC curves (p value = 0.6795).

CONCLUSION

This study presents a prediction model for patients with C-ARDS at 2,600 masl with easily available admission variables for early stratification of in-hospital mortality risk. Adjusting the P/F for 2,600 masl did not improve the predictive capacity of the model. We do not recommend adjusting the P/F for altitude.

摘要

简介

急性呼吸窘迫综合征(ARDS)的诊断包括动脉氧分压与吸入氧分数比值(P/F)≤300,由于高原低氧血症,常在海拔 1000 米以上的地方进行调整。本研究的主要目的是在海拔 2600 米的地方,为海拔 2600 米处因 2019 年冠状病毒病(COVID-19)(C-ARDS)导致的 ARDS 患者开发一种易于在入院时获得的变量的院内死亡率预测模型,并将其与使用高原校正的 P/F 的第二个模型的鉴别能力进行比较。

方法

这是一项对 2020 年 3 月至 2021 年 7 月期间在哥伦比亚波哥大市海拔 2600 米的一所大学医院接受治疗的 C-ARDS 患者进行的数据分析。从电子记录中提取人口统计学和实验室数据。对于预测模型,进行单变量分析以筛选 p<0.25 的变量。然后,使用具有 0.1 显著性水平的向后逐步方法自动选择这些变量。还检查了交互项和分数多项式。使用多重插补程序和引导程序获得最佳外部验证的系数。此外,还进行了模型的总调整和逻辑回归诊断。使用相同的方法开发了第二个使用海拔校正的 P/F 的模型。最后,比较了两个模型的接收器工作特征(ROC)曲线的曲线下面积(AUC)。

结果

共纳入 2210 例患者进行最终分析。最终模型包含 11 个没有交互项或非线性函数的变量。排除了有影响的观察值后的系数。模型拟合的最终方程为 g(x)=age(0.04819)+weight(0.00653)+height(-0.01856)+haemoglobin(-0.0916)+platelet count(-0.003614)+creatinine(0.0958)+lactate dehydrogenase(0.001589)+sodium(-0.02298)+potassium(0.1574)+systolic pressure(-0.00308)+if moderate ARDS(0.628)+if severe ARDS(1.379),院内死亡的概率为 p(x)=e g(x)/(1+e g(x))。ROC 曲线的 AUC 为 0.7601(95%置信区间(CI)0.74-0.78)。校正 P/F 的第二个模型的 AUC 为 0.754(95%CI 0.73-0.77)。AUC 曲线之间没有发现统计学上的显著差异(p 值=0.6795)。

结论

本研究提出了一个在海拔 2600 米处患有 C-ARDS 的患者的预测模型,该模型使用易于在入院时获得的变量进行早期分层,以预测院内死亡率风险。校正 2600 米处的 P/F 并不能提高模型的预测能力。我们不建议调整海拔的 P/F。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8566/10602283/25faaa339882/pone.0293476.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验