Suekuni Murilo T, Allgeier Alan M
Department of Chemical and Petroleum Engineering, The Center for Environmentally Beneficial Catalysis, and The Institute for Sustainable Engineering, University of Kansas, Lawrence, Kansas 66045, United States.
JACS Au. 2023 Oct 9;3(10):2826-2834. doi: 10.1021/jacsau.3c00384. eCollection 2023 Oct 23.
This study elucidates the impact of surface chemistry on solvent spin relaxation rates via time-domain nuclear magnetic resonance (TD-NMR). Suspensions of polymer particles of known surface chemistry were prepared in water and -decane. Trends in solvent transverse relaxation rates demonstrated that surface polar functional groups induce stronger interactions with water with the opposite effect for -decane. NMR surface relaxivities (ρ) calculated for the solid-fluid pairs ranged from 0.4 to 8.0 μm s and 0.3 to 5.4 μm s for water and -decane, respectively. The values of ρ for water displayed an inverse relationship to contact angle measurements on surfaces of similar composition, supporting the correlation of the TD-NMR output with polymer wettability. Surface composition, i.e., H/C ratios and heteroatom content, mainly contributed to the observed surface relaxivities compared to polymer % crystallinity and mean particle sizes via multiple linear regression. Ultimately, these findings emphasize the significance of surface chemistry in TD-NMR measurements and provide a quantitative foundation for future research involving TD-NMR investigations of wetted surface area and fluid-surface interactions. A comprehensive understanding of the factors influencing solvent relaxation in porous media can aid the optimization of industrial processes and the design of materials with enhanced performance.
本研究通过时域核磁共振(TD-NMR)阐明了表面化学对溶剂自旋弛豫速率的影响。制备了具有已知表面化学性质的聚合物颗粒在水和正癸烷中的悬浮液。溶剂横向弛豫速率的趋势表明,表面极性官能团与水的相互作用更强,而对正癸烷则有相反的影响。为固液对计算的NMR表面弛豫率(ρ),水的范围为0.4至8.0μm/s,正癸烷的范围为0.3至5.4μm/s。水的ρ值与类似组成表面的接触角测量值呈反比关系,支持了TD-NMR输出与聚合物润湿性的相关性。通过多元线性回归,与聚合物的结晶度百分比和平均粒径相比,表面组成(即H/C比和杂原子含量)对观察到的表面弛豫率起主要作用。最终,这些发现强调了表面化学在TD-NMR测量中的重要性,并为未来涉及TD-NMR研究湿润表面积和流体-表面相互作用的研究提供了定量基础。全面了解影响多孔介质中溶剂弛豫的因素有助于优化工业过程以及设计性能增强的材料。