Suppr超能文献

低压浸渗法制备高速列车用AlO/5083Al互穿相复合材料浸渗与凝固过程的模拟与实验

Simulation and Experimental of Infiltration and Solidification Process for AlO/5083Al Interpenetrating Phase Composite for High Speed Train Prepared by Low-Pressure Infiltration.

作者信息

Jiang Yanli, Xu Pianpian, Zhang Chen, Jin Fengjun, Li Yichao, Cao Xiuling, Yu Liang

机构信息

Key Laboratory of New Processing Technology for Nonferrous Metals & Materials, Guilin University of Technology, Guilin 541004, China.

Hebei Technology Innovation Center for Intelligent Development and Control of Underground Built Environment, Shijiazhuang 050031, China.

出版信息

Materials (Basel). 2023 Oct 11;16(20):6634. doi: 10.3390/ma16206634.

Abstract

Understanding the infiltration and solidification processes of liquid 5083Al alloy into AlO three-dimensional reticulated porous ceramic (AlO RPC) is essential for optimizing the microstructure and properties of AlO/5083Al interpenetrating phase composites (IPCs) prepared by low-pressure infiltration process (LPIP). This study employs ProCAST software to simulate the infiltration and solidification processes of liquid 5083Al with pouring velocities (PV) of 0.4 m/s infiltrating into AlO RPC preforms with varying porosities at different pouring temperatures (PT) to prepare AlO/5083Al IPCs using LPIP. The results demonstrate that pore diameter of AlO RPC preforms and PT of liquid 5083Al significantly influence the of the infiltration. Solidification process analysis reveals that the AlO RPC preform with smaller pore diameters allows the lower pouring velocity of 5083Al to solidify faster compared to the preform with larger pore diameters. AlO/5083Al IPCs were prepared successfully from AlO RPC porosity of 15 PPI with liquid 5083Al at PV 0.4 m/s and PT 800 °C using LPIP, resulting in nearly fully dense composites, where both AlO RPCs and 5083Al interpenetrate throughout the microstructure. The infiltration and solidification defects were reduced under air pressure of 0.3 MPa (corresponding to PV of 0.4 m/s) during LPIP. Finite volume method simulations are in good agreement with experimental data, validating the suitability of the simplified model for AlO RPCs in the infiltration simulation.

摘要

了解液态5083铝合金渗入AlO三维网状多孔陶瓷(AlO RPC)并凝固的过程,对于优化通过低压浸渗工艺(LPIP)制备的AlO/5083Al互穿相复合材料(IPC)的微观结构和性能至关重要。本研究采用ProCAST软件,模拟在不同浇注温度(PT)下,浇注速度(PV)为0.4 m/s的液态5083Al渗入不同孔隙率的AlO RPC预制件的浸渗和凝固过程,以使用LPIP制备AlO/5083Al IPC。结果表明,AlO RPC预制件的孔径和液态5083Al的PT对浸渗有显著影响。凝固过程分析表明,与孔径较大的预制件相比,孔径较小的AlO RPC预制件能使5083Al的较低浇注速度更快凝固。使用LPIP,在PV为0.4 m/s、PT为800°C的条件下,成功地由孔隙率为15 PPI的AlO RPC和液态5083Al制备出AlO/5083Al IPC,得到了几乎完全致密的复合材料,其中AlO RPC和5083Al在整个微观结构中相互贯穿。在LPIP过程中,在0.3 MPa的气压(对应于PV为0.4 m/s)下,浸渗和凝固缺陷减少。有限体积法模拟结果与实验数据吻合良好,验证了简化模型在AlO RPC浸渗模拟中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e77/10608752/8453456f6f47/materials-16-06634-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验