Suppr超能文献

基于轻量化 YOLOv5n 的深海生物检测方法。

Deep-Sea Biological Detection Method Based on Lightweight YOLOv5n.

机构信息

National Deep Sea Center, Qingdao 266237, China.

College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.

出版信息

Sensors (Basel). 2023 Oct 20;23(20):8600. doi: 10.3390/s23208600.

Abstract

Deep-sea biological detection is essential for deep-sea resource research and conservation. However, due to the poor image quality and insufficient image samples in the complex deep-sea imaging environment, resulting in poor detection results. Furthermore, most existing detection models accomplish high precision at the expense of increased complexity, and leading cannot be well deployed in the deep-sea environment. To alleviate these problems, a detection method for deep-sea organisms based on lightweight YOLOv5n is proposed. First, a lightweight YOLOv5n is created. The proposed image enhancement method based on global and local contrast fusion (GLCF) is introduced into the input layer of YOLOv5n to address the problem of color deviation and low contrast in the image. At the same time, a Bottleneck based on the Ghost module and simAM (GS-Bottleneck) is developed to achieve a lightweight model while ensuring sure detection performance. Second, a transfer learning strategy combined with knowledge distillation (TLKD) is designed, which can reduce the dependence of the model on the amount of data and improve the generalization ability to enhance detection accuracy. Experimental results on the deep-sea biological dataset show that the proposed method achieves good detection accuracy and speed, outperforming existing methods.

摘要

深海生物探测对于深海资源研究和保护至关重要。然而,由于复杂深海成像环境中的图像质量较差且图像样本不足,导致检测结果不佳。此外,大多数现有的检测模型都以增加复杂度为代价来实现高精度,因此无法很好地部署在深海环境中。为了解决这些问题,提出了一种基于轻量级 YOLOv5n 的深海生物检测方法。首先,创建了一个轻量级的 YOLOv5n。引入了基于全局和局部对比度融合(GLCF)的图像增强方法到 YOLOv5n 的输入层,以解决图像颜色偏差和对比度低的问题。同时,开发了一种基于 Ghost 模块和 simAM(GS-Bottleneck)的瓶颈,以在确保检测性能的同时实现轻量级模型。其次,设计了一种结合迁移学习策略和知识蒸馏(TLKD)的方法,可以减少模型对数据量的依赖,提高泛化能力,从而提高检测精度。在深海生物数据集上的实验结果表明,所提出的方法在检测精度和速度方面都取得了良好的效果,优于现有的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55fd/10611201/a15b7131c74d/sensors-23-08600-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验