Suppr超能文献

在单壁碳纳米管生长过程中打破其轴对称性。

Breaking the Axis-Symmetry of a Single-Wall Carbon Nanotube During Its Growth.

作者信息

Zhang Lili, Xu Ziwei, Feng Tian-Liang, He Maoshuai, Hansen Thomas Willum, Wagner Jakob Birkedal, Liu Chang, Cheng Hui-Ming

机构信息

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.

School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.

出版信息

Adv Sci (Weinh). 2023 Dec;10(36):e2304905. doi: 10.1002/advs.202304905. Epub 2023 Oct 28.

Abstract

The asymmetrical growth of a single-wall carbon nanotube (SWCNT) by introducing a change of a local atomic structure, is usually inevitable and supposed to have a profound effect on the chirality control and property tailor. However, the breaking of the symmetry during SWCNT growth remains unexplored and its origins at the atomic-scale are elusive. Here, environmental transmission electron microscopy is used to capture the process of breaking the symmetry of a growing SWCNT from a sub-2-nm platinum catalyst nanoparticle in real-time, demonstrating that topological defects formed on the side of a SWCNT can serve as a buffer for stress release and inherently break its axis-symmetrical growth. Atomic-level details reveal the importance of the tube-catalyst interface and how the atom rearrangement of the solid-state platinum catalyst around the interface influences the final tubular structure. The active sites responsible for trapping carbon dimers and providing enough driving force for carbon incorporation and asymmetric growth are shown to be low-coordination step edges, as confirmed by theoretical simulations.

摘要

通过引入局部原子结构的变化来实现单壁碳纳米管(SWCNT)的不对称生长通常是不可避免的,并且被认为会对手性控制和性能定制产生深远影响。然而,SWCNT生长过程中的对称性破坏仍未得到探索,其在原子尺度上的起源也难以捉摸。在这里,环境透射电子显微镜被用于实时捕捉从亚2纳米铂催化剂纳米颗粒生长的SWCNT对称性破坏的过程,表明在SWCNT侧面形成的拓扑缺陷可以作为应力释放的缓冲,并固有地打破其轴对称生长。原子级细节揭示了管-催化剂界面的重要性,以及界面周围固态铂催化剂的原子重排如何影响最终的管状结构。理论模拟证实,负责捕获碳二聚体并为碳掺入和不对称生长提供足够驱动力的活性位点是低配位台阶边缘。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a3e/10754088/73250edda62a/ADVS-10-2304905-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验