Janssen Research and Development LLC, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA.
Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA.
Sci Rep. 2023 Oct 30;13(1):18602. doi: 10.1038/s41598-023-45446-z.
Protein therapeutics are susceptible to clipping via enzymatic and nonenzymatic mechanisms that create neo-N-termini. Typically, neo-N-termini are identified by chemical derivatization of the N-terminal amine with (N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) followed by proteolysis and mass spectrometric analysis. Detection of the TMPP-labeled peptide is achieved by mapping the peptide sequence to the product ion spectrum derived from collisional activation. The site-specific localization of the TMPP tag enables unambiguous determination of the true N-terminus or neo-N-termini. In addition to backbone product ions, TMPP reporter ions at m/z 573, formed via collision-induced dissociation, can be diagnostic for the presence of a processed N-termini. However, reporter ions generated by collision-induced dissociation may be uninformative because of their low abundance. We demonstrate a novel high-throughput LC-MS method for the facile generation of the TMPP reporter ion at m/z 533 and, in some instances m/z 590, upon electron transfer dissociation. We further demonstrate the diagnostic utility of TMPP labeled peptides derived from a total cell lysate shows high degree of specificity towards selective N-terminal labeling over labeling of lysine and tyrosine and highly-diagnostic Receiver Operating Characteristic's (ROC) of TMPP reporter ions of m/z 533 and m/z 590. The abundant generation of these reporters enables subsequent MS/MS by intensity and m/z-dependent triggering of complementary ion activation modes such as collision-induced dissociation, high-energy collision dissociation, or ultraviolet photo dissociation for subsequent peptide sequencing.
蛋白质治疗药物容易通过酶和非酶机制发生剪辑,从而产生新的 N 末端。通常,新的 N 末端是通过用(N-琥珀酰亚胺氧基羰基甲基)三(2,4,6-三甲氧基苯基)膦溴化物(TMPP)对 N 末端胺进行化学衍生化,然后进行蛋白水解和质谱分析来识别的。通过将肽序列映射到来自碰撞激活的产物离子光谱,可以检测到 TMPP 标记的肽。TMPP 标记的肽的特异性定位可实现对真实 N 末端或新 N 末端的明确确定。除了骨干产物离子外,通过碰撞诱导解离形成的 m/z 573 的 TMPP 报告离子也可以作为存在加工的 N 末端的诊断。但是,由于报告离子的丰度低,因此可能无法提供有关碰撞诱导解离产生的报告离子的信息。我们展示了一种新颖的高通量 LC-MS 方法,可通过电子转移解离轻松生成 m/z 533 的 TMPP 报告离子,在某些情况下还可生成 m/z 590 的报告离子。我们进一步证明了 TMPP 标记的肽衍生自总细胞裂解物的诊断用途,其对选择性 N 末端标记具有高度特异性,而对赖氨酸和酪氨酸的标记则具有高度特异性,并且 TMPP 报告离子的 m/z 533 和 m/z 590 的接收者操作特征(ROC)具有高度诊断性。这些报告离子的大量产生可以通过强度和 m/z 依赖性触发互补离子激活模式(例如碰撞诱导解离、高能碰撞解离或紫外线光解离)来进行后续的 MS/MS,以进行随后的肽测序。