Derry Alexander, Altman Russ B
Department of Biomedical Data Science, Stanford University, Stanford, CA.
Departments of Bioengineering, Genetics, and Medicine, Stanford University, Stanford, CA.
bioRxiv. 2023 Oct 16:2023.10.13.562298. doi: 10.1101/2023.10.13.562298.
The rapid expansion of protein sequence and structure databases has resulted in a significant number of proteins with ambiguous or unknown function. While advances in machine learning techniques hold great potential to fill this annotation gap, current methods for function prediction are unable to associate global function reliably to the specific residues responsible for that function. We address this issue by introducing PARSE (Protein Annotation by Residue-Specific Enrichment), a knowledge-based method which combines pre-trained embeddings of local structural environments with traditional statistical techniques to identify enriched functions with residue-level explainability. For the task of predicting the catalytic function of enzymes, PARSE achieves comparable or superior global performance to state-of-the-art machine learning methods (F1 score > 85%) while simultaneously annotating the specific residues involved in each function with much greater precision. Since it does not require supervised training, our method can make one-shot predictions for very rare functions and is not limited to a particular type of functional label (e.g. Enzyme Commission numbers or Gene Ontology codes). Finally, we leverage the AlphaFold Structure Database to perform functional annotation at a proteome scale. By applying PARSE to the dark proteome-predicted structures which cannot be classified into known structural families-we predict several novel bacterial metalloproteases. Each of these proteins shares a strongly conserved catalytic site despite highly divergent sequences and global folds, illustrating the value of local structure representations for new function discovery.
蛋白质序列和结构数据库的迅速扩展导致大量蛋白质的功能模糊或未知。虽然机器学习技术的进步具有填补这一注释空白的巨大潜力,但目前的功能预测方法无法将全局功能可靠地与负责该功能的特定残基联系起来。我们通过引入PARSE(基于残基特异性富集的蛋白质注释)来解决这个问题,这是一种基于知识的方法,它将局部结构环境的预训练嵌入与传统统计技术相结合,以识别具有残基水平可解释性的富集功能。对于预测酶的催化功能这一任务,PARSE在全局性能上与最先进的机器学习方法相当或更优(F1分数>85%),同时能以更高的精度注释每个功能中涉及的特定残基。由于它不需要监督训练,我们的方法可以对非常罕见的功能进行一次性预测,并且不限于特定类型的功能标签(例如酶委员会编号或基因本体代码)。最后,我们利用AlphaFold结构数据库在蛋白质组规模上进行功能注释。通过将PARSE应用于无法归类到已知结构家族的暗蛋白质组预测结构,我们预测了几种新型细菌金属蛋白酶。尽管这些蛋白质的序列和全局折叠高度不同,但它们都共享一个高度保守的催化位点,这说明了局部结构表示在新功能发现中的价值。