Ferdous Naim, Islam Md Sherajul, Alam Md Shahabul, Zamil Md Yasir, Biney Jeshurun, Vatani Sareh, Park Jeongwon
Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA.
Department of Electrical and Electronic Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh.
Sci Rep. 2023 Oct 31;13(1):18778. doi: 10.1038/s41598-023-45744-6.
Adapting two-dimensional (2D) van der Walls bilayer heterostructure is an efficient technique for realizing fascinating properties and playing a key role in solar energy-driven water decomposition schemes. By means of first-principles calculations, this study reveals the intriguing potential of a novel 2D van der Walls hetero-bilayer consisting of GeC and AlN layer in the photocatalytic water splitting method to generate hydrogen. The GeC/AlN heterostructure has an appropriate band gap of 2.05 eV, wherein the band edges are in proper energetic positions to provoke the water redox reaction to generate hydrogen and oxygen. The type-II band alignment of the bilayer facilitates the real-space spontaneous separation of the photogenerated electrons and holes in the different layers, improving the photocatalytic activity significantly. Analysis of the electrostatic potential and the charge density difference unravels the build-up of an inherent electric field at the interface, preventing electron-hole recombination. The ample absorption spectrum of the bilayer from the ultra-violet to the near-infrared region, reaching up to 8.71 × 10/cm, combined with the resiliency to the biaxial strain, points out the excellent photocatalytic performance of the bilayer heterostructure. On top of rendering useful information on the key features of the GeC/AlN hetero-bilayer, the study offers informative details on the experimental design of the van der Walls bilayer heterostructure for solar-to-hydrogen conversion applications.
适配二维(2D)范德华双层异质结构是实现迷人特性的有效技术,并且在太阳能驱动的水分解方案中发挥关键作用。通过第一性原理计算,本研究揭示了由GeC和AlN层组成的新型二维范德华异质双层在光催化水分解制氢方法中的有趣潜力。GeC/AlN异质结构具有2.05 eV的合适带隙,其中带边处于适当的能量位置,以引发水氧化还原反应生成氢气和氧气。双层的II型能带排列促进了不同层中光生电子和空穴在实空间的自发分离,显著提高了光催化活性。对静电势和电荷密度差的分析揭示了界面处固有电场的形成,防止了电子-空穴复合。双层从紫外到近红外区域的丰富吸收光谱,高达8.71×10/cm,再加上对双轴应变的弹性,表明了双层异质结构优异的光催化性能。除了提供关于GeC/AlN异质双层关键特性的有用信息外,该研究还提供了关于用于太阳能到氢能转换应用的范德华双层异质结构实验设计的详细信息。