Departamento de Biotecnología-Biología Vegetal, ETSIAAB, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain.
Int J Biol Macromol. 2024 Jan;254(Pt 2):127798. doi: 10.1016/j.ijbiomac.2023.127798. Epub 2023 Nov 3.
An all-atom Molecular Dynamics (MD) study was applied to three viral nanoparticles (VLPs) of Turnip mosaic virus (TuMV), a potyvirus: the particles genetically functionalized with two peptides, VIP (human vasoactive intestinal peptide) and VEGFR (peptide derived from the human receptor 3 of the vascular endothelial growth factor), and the non-functionalized VLP. Previous experimental results showed that VIP-VLP was the only construct of the three that was not viable. VLPs subjected to our MD study were modeled by four complete turns of the particle involving 35 subunits of the coat protein (CP). The MD simulations showed differences in structures and interaction energies associated to the crucial contribution of the disordered N-terminal arms of CP to the global stability of the particle. These differences suggested an overall stability greater in VEGFR-VLP and smaller in VIP-VLP as compared to the unfunctionalized VLP. Our novel MD study of potyviral VLPs revealed essential clues about structure and interactions of these assembled protein particles and suggests that the computational prediction of the viability of VLPs can be a valuable contribution in the field of viral nanobiotechnology.
采用全原子分子动力学(MD)研究了芜菁花叶病毒(TuMV)的三种病毒样颗粒(VLPs):用两种肽VIP(人血管活性肠肽)和 VEGFR(源自人血管内皮生长因子受体 3 的肽)遗传功能化的颗粒,以及非功能化的 VLP。先前的实验结果表明,VIP-VLP 是三种结构中唯一不可存活的构建体。我们的 MD 研究中对 VLP 进行建模的方法是使用涉及衣壳蛋白(CP)35 个亚基的颗粒的四个完整转。MD 模拟显示了结构和相互作用能的差异,这与 CP 的无规 N 端臂对颗粒整体稳定性的关键贡献有关。与非功能化的 VLP 相比,这些差异表明 VEGFR-VLP 的整体稳定性更高,而 VIP-VLP 的整体稳定性更低。我们对马铃薯 Y 病毒 VLPs 的新型 MD 研究揭示了这些组装蛋白颗粒的结构和相互作用的重要线索,并表明 VLPs 存活的计算预测可以为病毒纳米生物技术领域做出有价值的贡献。