Suppr超能文献

快速AST:推断具有复杂表型的耐药机制的可能性。

Rapid AST: Possibility of inferring resistance mechanisms with complex phenotypes.

作者信息

Ligero-López J, Falces-Romero I, Aranda-Díaz A, García-Ballesteros D, García-Rodríguez J, Cendejas-Bueno E

机构信息

Emilio Cendejas-Bueno, Clinical Microbiology Department, Hospital Universitario La Paz, Madrid, Spain, Paseo de La Castellana 261, 28046 Madrid, Spain.

出版信息

Rev Esp Quimioter. 2024 Feb;37(1):88-92. doi: 10.37201/req/043.2023. Epub 2023 Nov 8.

Abstract

The new automated systems designed for rapid performance of AST have significantly reduced the response time for susceptibility testing of microorganisms causing bacteremia and sepsis. The Accelerate Pheno® system (AAC) is one such system. Our objective for this study was to determine whether the AAC system is capable of providing an accurate susceptibility profile to infer resistance mechanisms in different carbapenemase-producing isolates when compared to the MicroScan WalkAway System (MWS). Disk diffusion method was also performed on all isolates as a reference method. Additionally, we compared the results obtained with the routine AST production system. We selected 19 isolates from the cryobank of the Microbiology department, all of which were carbapenemase-producing gram-negative bacilli. AAC was able to identify and infer the resistance of a total of 10 isolates, with an EA and CA of 84.2% for meropenem and 88.2% and 64.7% for ertapenem EA and CA, respectively. If we consider the disk diffusion technique, the CA was 57.9% and 76.5% for meropenem and ertapenem. However, in the presence of carbapenemases, AAC was not able to provide adequate MICs or infer the resistance mechanisms of the isolates accurately. Further studies with a larger number of isolates, including the new antibiotics ceftolozane/tazobactam and ceftazidime/avibactam, are needed for a more comprehensive comparison.

摘要

为快速进行药敏试验(AST)而设计的新型自动化系统显著缩短了对引起菌血症和败血症的微生物进行药敏试验的响应时间。Accelerate Pheno®系统(AAC)就是这样一种系统。本研究的目的是确定与MicroScan WalkAway系统(MWS)相比,AAC系统是否能够提供准确的药敏谱,以推断不同产碳青霉烯酶分离株的耐药机制。还对所有分离株进行了纸片扩散法作为参考方法。此外,我们比较了常规AST生产系统获得的结果。我们从微生物学系的冷冻库中选择了19株分离株,所有这些都是产碳青霉烯酶的革兰氏阴性杆菌。AAC能够识别并推断出总共10株分离株的耐药情况,美罗培南的总体一致率(EA)和分类一致率(CA)分别为84.2%,厄他培南的EA和CA分别为88.2%和64.7%。如果考虑纸片扩散技术,美罗培南和厄他培南的CA分别为57.9%和76.5%。然而,在存在碳青霉烯酶的情况下,AAC无法提供足够的最低抑菌浓度(MIC)或准确推断分离株的耐药机制。需要对更多分离株进行进一步研究,包括新型抗生素头孢洛扎/他唑巴坦和头孢他啶/阿维巴坦,以进行更全面的比较。

相似文献

1
Rapid AST: Possibility of inferring resistance mechanisms with complex phenotypes.
Rev Esp Quimioter. 2024 Feb;37(1):88-92. doi: 10.37201/req/043.2023. Epub 2023 Nov 8.

本文引用的文献

5
Molecular characteristics of carbapenemase-producing Enterobacterales in the Netherlands; results of the 2014-2018 national laboratory surveillance.
Clin Microbiol Infect. 2020 Oct;26(10):1412.e7-1412.e12. doi: 10.1016/j.cmi.2020.01.027. Epub 2020 Feb 5.
6
Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: recent developments in molecular approaches.
Clin Microbiol Infect. 2018 Sep;24(9):944-955. doi: 10.1016/j.cmi.2018.05.007. Epub 2018 May 19.
8
Evaluation of the Accelerate Pheno System: Results from Two Academic Medical Centers.
J Clin Microbiol. 2018 Mar 26;56(4). doi: 10.1128/JCM.01672-17. Print 2018 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验