Department of Pharmacy, Uppsala University, Box 580, Uppsala, SE-75123, Sweden.
UCB Pharma, Slough, UK.
J Pharmacokinet Pharmacodyn. 2024 Feb;51(1):65-75. doi: 10.1007/s10928-023-09890-8. Epub 2023 Nov 9.
Biological therapies may act as immunogenic triggers leading to the formation of anti-drug antibodies (ADAs). Population pharmacokinetic (PK) models can be used to characterize the relationship between ADA and drug disposition but often rely on the ADA bioassay results, which may not be sufficiently sensitive to inform on this characterization.In this work, a methodology that could help to further elucidate the underlying ADA production and impact on the drug disposition was explored. A mixed hidden-Markov model (MHMM) was developed to characterize the underlying (hidden) formation of ADA against the biologic, using certolizumab pegol (CZP), as a test drug. CZP is a PEGylated Fc free TNF-inhibitor used in the treatment of rheumatoid arthritis and other chronic inflammatory diseases.The bivariate MHMM used information from plasma drug concentrations and ADA measurements, from six clinical studies (n = 845), that were correlated through a bivariate Gaussian function to infer about two hidden states; production and no-production of ADA influencing PK. Estimation of inter-individual variability was not supported in this case. Parameters associated with the observed part of the model were reasonably well estimated while parameters associated with the hidden part were less precise. Individual state sequences obtained using a Viterbi algorithm suggested that the model was able to determine the start of ADA production for each individual, being a more assay-independent methodology than traditional population PK. The model serves as a basis for identification of covariates influencing the ADA formation, and thus has the potential to identify aspects that minimize its impact on PK and/or efficacy.
生物疗法可能作为免疫原性触发因素,导致抗药物抗体(ADA)的形成。群体药代动力学(PK)模型可用于描述 ADA 与药物处置之间的关系,但通常依赖于 ADA 生物测定结果,而这些结果可能不够敏感,无法对此进行特征描述。在这项工作中,探索了一种可以帮助进一步阐明 ADA 产生及其对药物处置影响的方法。开发了一个混合隐马尔可夫模型(MHMM),以使用 certolizumab pegol(CZP)作为测试药物来描述 ADA 的潜在(隐藏)形成。CZP 是一种用于治疗类风湿关节炎和其他慢性炎症性疾病的无 Fc 的 PEGylated TNF 抑制剂。双变量 MHMM 使用了来自六个临床研究(n=845)的血浆药物浓度和 ADA 测量值的信息,这些信息通过双变量高斯函数相关联,以推断两个隐藏状态;ADA 产生和不产生对 PK 的影响。在这种情况下,不支持个体间变异性的估计。与观察模型部分相关的参数得到了合理的估计,而与隐藏部分相关的参数则不太精确。使用维特比算法获得的个体状态序列表明,该模型能够确定每个个体 ADA 产生的开始,这是一种比传统群体 PK 更具非检测方法学的方法。该模型可作为识别影响 ADA 形成的协变量的基础,因此有可能确定最小化其对 PK 和/或疗效影响的方面。