School of Computer Science and Engineering, Central South University, 410075, Changsha, China.
School of Computer and Data Science, Henan University of Urban Construction, 467000, Pingdingshan, China.
BMC Genomics. 2023 Nov 9;23(Suppl 6):865. doi: 10.1186/s12864-023-09578-w.
More and more studies show that lncRNA is widely involved in various physiological processes of the organism. However, the functions of the vast majority of them continue to be unknown. In addition, data related to lncRNAs in biological databases are constantly increasing. Therefore, it is quite urgent to develop a computing method to make the utmost of these data.
In this paper, we propose a new computational method based on global heterogeneous networks to predict the functions of lncRNAs, called DNGRGO. DNGRGO first calculates the similarities among proteins, miRNAs, and lncRNAs, and annotates the functions of lncRNAs according to its similar protein-coding genes, which have been labeled with gene ontology (GO). To evaluate the performance of DNGRGO, we manually annotated GO terms to lncRNAs and implemented our method on these data. Compared with the existing methods, the results of DNGRGO show superior predictive performance of maximum F-measure and coverage.
DNGRGO is able to annotate lncRNAs through capturing the low-dimensional features of the heterogeneous network. Moreover, the experimental results show that integrating miRNA data can help to improve the predictive performance of DNGRGO.
越来越多的研究表明,lncRNA 广泛参与生物体的各种生理过程。然而,它们的绝大多数功能仍未知。此外,生物数据库中与 lncRNA 相关的数据也在不断增加。因此,开发一种计算方法以充分利用这些数据是非常迫切的。
在本文中,我们提出了一种基于全局异质网络的新计算方法来预测 lncRNA 的功能,称为 DNGRGO。DNGRGO 首先计算蛋白质、miRNA 和 lncRNA 之间的相似性,并根据已标记基因本体论(GO)的相似蛋白编码基因对 lncRNA 的功能进行注释。为了评估 DNGRGO 的性能,我们手动注释了 lncRNA 的 GO 术语,并在这些数据上实现了我们的方法。与现有方法相比,DNGRGO 的结果在最大 F 度量和覆盖率方面表现出优越的预测性能。
DNGRGO 能够通过捕获异质网络的低维特征来注释 lncRNA。此外,实验结果表明,整合 miRNA 数据可以帮助提高 DNGRGO 的预测性能。