van Baalen Carolina, Uspal William E, Popescu Mihail N, Isa Lucio
Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland.
Department of Mechanical Engineering, University of Hawai'i at Mānoa, 2540 Dole St., Holmes Hall 302, Honolulu, HI 96822, USA.
Soft Matter. 2023 Nov 22;19(45):8790-8801. doi: 10.1039/d3sm01079a.
Efficient exploration of space is a paramount motive for active colloids in practical applications. Yet, introducing activity may lead to surface-bound states, hindering efficient space exploration. Here, we show that the interplay between self-motility and fuel-dependent affinity for surfaces affects how efficiently catalytically-active Janus microswimmers explore both liquid-solid and liquid-fluid interfaces decorated with arrays of similarly-sized obstacles. In a regime of constant velocity fuel concentration, we find that microswimmer-obstacle interactions strongly depend on fuel concentration, leading to a counter-intuitive decrease in space exploration efficiency with increased available fuel for all interfaces. Using experiments and theoretical predictions, we attribute this phenomenon to a largely overlooked change in the surface properties of the microswimmers' catalytic cap upon HO exposure. Our findings have implications in the interpretation of experimental studies of catalytically active colloids, as well as in providing new handles to control their dynamics in complex environments.
在实际应用中,对空间的高效探索是活性胶体的一个至关重要的动机。然而,引入活性可能会导致表面束缚状态,从而阻碍高效的空间探索。在此,我们表明自运动性与表面的燃料依赖性亲和力之间的相互作用,会影响具有催化活性的Janus微游动器对装饰有阵列状等尺寸障碍物的液-固和液-液界面进行高效探索的方式。在恒定速度和燃料浓度的情况下,我们发现微游动器与障碍物的相互作用强烈依赖于燃料浓度,导致在所有界面上,随着可用燃料增加,空间探索效率出现反直觉的降低。通过实验和理论预测,我们将这种现象归因于微游动器催化帽在暴露于HO时表面性质的一个很大程度上被忽视的变化。我们的研究结果对催化活性胶体的实验研究的解释具有启示意义,同时也为在复杂环境中控制它们的动力学提供了新的方法。