Creme Global, 4th Floor, The Design Tower, Trinity Technology & Enterprise Campus, Grand Canal Quay, Dublin 2 D02 P956, Ireland; University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
Sci Total Environ. 2024 Jan 15;908:168456. doi: 10.1016/j.scitotenv.2023.168456. Epub 2023 Nov 11.
This study presents a data-driven approach for classifying food safety alerts related to chemical and microbial contaminants in dairy products using the Rapid Alert System for Food and Feed (RASFF) and the World Health Organization (WHO)'s Global Environmental Monitoring System (GEMS) food contaminants databases. This research aimed to prioritise microbial and chemical hazards based on their presence and severity through exploratory data analysis and to classify the severity of chemical hazards using machine learning (ML) approaches. It identified Listeria monocytogenes, Escherichia coli, Salmonella, Pseudomonas spp., Staphylococcus spp., Bacillus cereus, Clostridium spp., and Cronobacter sakazakii as the microbial hazards of priority in dairy products. The study also prioritised the top ten chemical hazards based on their presence and severity. These hazards include nitrate, nitrite, ergocornine, 3-MCPD ester, lead, arsenic, ochratoxin A, cadmium, mercury, and aflatoxin (G1, B1, G2, B2, G5 and M1). Using ML techniques, the accuracy rate of classifying food safety alerts as either 'serious' or 'non-serious' was up to 98 %. Additionally, the study identified Reference dose (RfD), substance amount, notification type, product, and substance as the most important features affecting the ML models' performance. These ML models (decision trees, random forests, k-nearest neighbors, linear discriminant analysis, and support vector machines) were also validated on an external dataset of RASFF alerts related to chemical contaminants in dairy products. They achieved an accuracy of up to 95.1 %. The study's findings demonstrate the models' robustness and ability to classify food safety alerts related to chemical contaminants in dairy products, even on new data. These results can enhance the development of more effective machine-learning models for classifying food safety alerts related to chemical contaminants in dairy products, highlighting the importance of developing accurate and efficient classification models for timely intervention.
本研究提出了一种使用食品和饲料快速警报系统(RASFF)和世界卫生组织(WHO)全球环境监测系统(GEMS)食品污染物数据库对乳制品中化学和微生物污染物相关食品安全警报进行分类的基于数据驱动的方法。本研究旨在通过探索性数据分析,根据其存在和严重程度对微生物和化学危害进行优先级排序,并使用机器学习(ML)方法对化学危害的严重程度进行分类。它确定了单核细胞增生李斯特菌、大肠杆菌、沙门氏菌、假单胞菌、葡萄球菌、蜡样芽孢杆菌、梭状芽孢杆菌和阪崎克罗诺杆菌是乳制品中优先考虑的微生物危害。该研究还根据其存在和严重程度确定了前 10 种化学危害的优先级。这些危害包括硝酸盐、亚硝酸盐、麦角胺、3-MCPD 酯、铅、砷、赭曲霉毒素 A、镉、汞和黄曲霉毒素(G1、B1、G2、B2、G5 和 M1)。使用 ML 技术,将食品安全警报分类为“严重”或“非严重”的准确率高达 98%。此外,该研究还确定参考剂量(RfD)、物质数量、通知类型、产品和物质是影响 ML 模型性能的最重要特征。这些 ML 模型(决策树、随机森林、k-最近邻、线性判别分析和支持向量机)也在与乳制品中化学污染物相关的 RASFF 警报的外部数据集上进行了验证。它们的准确率高达 95.1%。研究结果表明,这些模型能够稳健地对乳制品中与化学污染物相关的食品安全警报进行分类,即使是在新数据上也是如此。这些结果可以增强针对乳制品中与化学污染物相关的食品安全警报进行分类的更有效的机器学习模型的开发,突出了开发准确和高效的分类模型以进行及时干预的重要性。