Rubiano-Navarrete Andrés, Fabian Camilo Lesmes, Torres-Pérez Yolanda, Gómez-Pachón Edwin
Grupo de Investigación DITMAV-Diseño, Innovación y Asistencia Técnica para Materiales Avanzados, Joven Investigador, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja 150003, Colombia.
Dirección de Investigaciones, Corporación Universitaria del Meta, UniMeta, Villavicencio 500001, Colombia.
Polymers (Basel). 2023 Oct 28;15(21):4249. doi: 10.3390/polym15214249.
In recent decades, there has been an increasing focus on the alarming decline in global bee populations, given their critical ecological contributions to natural pollination and biodiversity. This decline, marked by a substantial reduction in bee colonies in forested areas, has serious implications for sustainable beekeeping practices and poses a broader risk to ecological well-being. Addressing these pressing issues requires innovative solutions, one of which involves the development and fabrication of beehives crafted from composite materials that are ecologically compatible with bee biology. Importantly, these materials should also exhibit a high resistance to environmental factors, such as ultraviolet (UV) radiation, in order to maintain their mechanical integrity and longevity. To investigate this, we conducted accelerated UV degradation tests on a variety of composite materials to rapidly assess their susceptibility to UV-induced changes. High-density polyethylene (HDPE) served as the matrix material and was reinforced with natural fibers, specifically fique fibers (), banana fibers, and goose feathers. Our findings indicate that UV radiation exposure results in a noticeable reduction in the tensile strength of these materials. For example, wood composites experienced a 48% decline in tensile strength over a 60-day period, a rate of deterioration notably higher than that of other tested composite materials. Conversely, HDPE composites fortified with banana fibers initially demonstrated tensile strengths exceeding 9 MPa and 10 MPa. Although these values gradually decreased over the observation period, the composites still displayed favorable stress-strain characteristics. This research underscores the substantial influence of UV radiation on the longevity and efficacy of beehive materials, which in turn affects the durability of natural wood hives exposed to these environmental factors. The resultant increased maintenance and replacement costs for beekeepers further emphasize the need for judicious material selection in beehive construction and point to the viability of the composite materials examined in this study.
近几十年来,全球蜜蜂数量急剧下降,这一现象引发了越来越多的关注,因为蜜蜂对自然授粉和生物多样性起着至关重要的生态作用。这种下降表现为森林地区蜂群数量大幅减少,对可持续养蜂实践产生了严重影响,并对生态福祉构成了更广泛的风险。解决这些紧迫问题需要创新解决方案,其中之一涉及开发和制造由与蜜蜂生物学生态兼容的复合材料制成的蜂箱。重要的是,这些材料还应表现出对紫外线(UV)辐射等环境因素的高抗性,以保持其机械完整性和使用寿命。为了对此进行研究,我们对多种复合材料进行了加速紫外线降解测试,以快速评估它们对紫外线引起的变化的敏感性。高密度聚乙烯(HDPE)用作基体材料,并用天然纤维增强,具体为菲克纤维、香蕉纤维和鹅毛。我们的研究结果表明,紫外线辐射会导致这些材料的拉伸强度显著降低。例如,木质复合材料在60天内拉伸强度下降了48%,其劣化速度明显高于其他测试的复合材料。相反,用香蕉纤维增强的HDPE复合材料最初的拉伸强度超过9兆帕和10兆帕。尽管这些值在观察期内逐渐下降,但复合材料仍表现出良好的应力应变特性。这项研究强调了紫外线辐射对蜂箱材料寿命和功效的重大影响,进而影响暴露于这些环境因素下的天然木质蜂箱的耐久性。养蜂人由此增加的维护和更换成本进一步凸显了在蜂箱建造中明智选择材料的必要性,并表明了本研究中所检验的复合材料的可行性。