Suppr超能文献

嵌段共聚物中的机械化学:动态相分离导致的新断裂位点

Mechanochemistry in Block Copolymers: New Scission Site due to Dynamic Phase Separation.

作者信息

Zhang Hang, Zoubi Alan Z, Silberstein Meredith N, Diesendruck Charles E

机构信息

Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa, 3200008, Israel.

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.

出版信息

Angew Chem Int Ed Engl. 2023 Dec 21;62(52):e202314781. doi: 10.1002/anie.202314781. Epub 2023 Nov 27.

Abstract

Mechanochemistry can lead to the degradation of the properties of covalent macromolecules. In recent years, numerous functional materials have been developed based on block copolymers (BCPs), however, like homopolymers, their chains could undergo mechanochemical damage during processing, which could have crucial impact on their performance. To investigate the mechanochemical response of BCPs, multiple polymers comprising different ratios of butyl acrylate and methyl methacrylate were prepared with similar degree of polymerization and stressed in solution via ultrasonication. Interestingly, all BCPs, regardless of the amount of the methacrylate monomer, presented a mechanochemistry rate constant similar to that of the methacrylate homopolymer, while a random copolymer reacted like the acrylate homopolymer. Size-exclusion chromatography showed that, in addition to the typical main peak shift towards higher retention times, a different daughter fragment was produced indicating a secondary selective scission site, situated around the covalent connection between the two blocks. Molecular dynamics modeling using acrylate and methacrylate oligomers were carried out and indicated that dynamic phase separation occurs even in a good solvent. Such non-random conformations can explain the faster polymer mechanochemistry. Moreover, the dynamic model for end-to-end chain overstretching supports bond scission which is not necessarily chain-centered.

摘要

机械化学会导致共价大分子的性能降解。近年来,基于嵌段共聚物(BCP)开发了许多功能材料,然而,与均聚物一样,它们的链在加工过程中可能会受到机械化学损伤,这可能对其性能产生关键影响。为了研究BCP的机械化学反应,制备了多种具有相似聚合度、不同丙烯酸丁酯和甲基丙烯酸甲酯比例的聚合物,并通过超声处理使其在溶液中受力。有趣的是,所有BCP,无论甲基丙烯酸酯单体的含量如何,其机械化学速率常数都与甲基丙烯酸酯均聚物相似,而无规共聚物的反应则与丙烯酸酯均聚物相似。尺寸排阻色谱显示,除了典型的主峰向更高保留时间的位移外,还产生了一个不同的子片段,表明在两个嵌段之间的共价连接周围存在一个二级选择性断裂位点。使用丙烯酸酯和甲基丙烯酸酯低聚物进行了分子动力学建模,结果表明即使在良溶剂中也会发生动态相分离。这种非随机构象可以解释更快的聚合物机械化学。此外,端到端链过度拉伸的动态模型支持键断裂,而键断裂不一定以链为中心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验