Suppr超能文献

用于能源应用的介孔无机材料的旋节线分解驱动结构层次

Spinodal Decomposition-Driven Structural Hierarchy of Mesoporous Inorganic Materials for Energy Applications.

作者信息

Ban Minkyeong, Woo Dongyoon, Hwang Jongkook, Kim Seongseop, Lee Jinwoo

机构信息

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon 34141, Republic of Korea.

Department of Chemical Engineering, Ajou University, Worldcupro 206, Suwon 16499, Republic of Korea.

出版信息

Acc Chem Res. 2023 Dec 5;56(23):3428-3440. doi: 10.1021/acs.accounts.3c00524. Epub 2023 Nov 14.

Abstract

ConspectusMesoporous inorganic materials (MIMs) directed by block copolymers (BCPs) have attracted tremendous attention due to their high surface area, large pore volume, and tunable pore size. The structural hierarchy of inorganic materials with designed meso- and macrostructures combines the benefits of mesoporosity and tailored macrostructures in which macropores have increased ion/mass transfer and large capacity to carry guest material and have a macroscale particle morphology that permits close packing and a low surface energy. Existing methods for hierarchically structured MIMs require complicated multistep procedures including preparation of sacrificial macrotemplates (e.g., foams and colloidal spheres). Despite considerable efforts to control the macrostructures of mesoporous materials, major challenges remain in the formation of a structural hierarchy with ordered mesoporosity.In polymer science, spinodal decomposition (SD) is a physical phenomenon that spontaneously produces a wide variety of macroscale heterostructures from interconnected networks to isolated droplets. Exploitation of SD is a promising method to achieve precise control of the macrostructure (e.g., macropore, particle morphology) and mesostructure (e.g., pore size and structure, composition) of inorganic materials. However, this approach for tailoring the structural hierarchy of MIMs is unexplored due to the lack of effective systems that can control the complex thermodynamic interactions of inorganic precursor/polymer blends and the phase-separation kinetics.In this Account, we present our recent research progress on the development of synthesis systems that combine unique SD behaviors and BCP self-assembly in polymer blends. To generate macropores in MIMs, we have exploited interconnected macrostructures of SD induced by designed quench conditions of multicomponent blends containing BCP. These strategies enable control of the size of the macropores of the nanostructures independently and can be extended to various compositions (e.g., carbon, SiO, TiO, WO, TiNbO, TiN). We also control the macroscopic morphology of the MIMs into spherical particles (e.g., solid and hollow mesoporous spheres) by using SD induced by increasing the mixing entropy penalty of polymer blends that consist BCP, homopolymer(s), and inorganic precursors. Furthermore, interfacial tension between polymers determines the macroscopic morphology of MIMs, from isotropic to anisotropic mesoporous particles (e.g., oblate, bowl, 2D nanosheet). The interfacial states of the homopolymer determine the pore orientation and particle morphology of BCP-directed MIMs.We also highlight the application of the hierarchically structured MIMs in energy storage devices. Generated macropores facilitate ion/mass transfer in lithium-ion batteries and stable accommodation of a large amount of sulfur in lithium-sulfur batteries. Designed morphologies of MIMs are beneficial to achieve high packing density as electrode materials in potassium-ion batteries and thereby achieve high volumetric capacities.Recent advances in SD-driven synthesis for the structural hierarchy of MIMs will inspire how polymer science can be used as a platform for preparing the designed inorganic materials. Additionally, broadening the polymer and composition repertoire will guide in novel frontiers in the design and applications of MIMs in various fields.

摘要

概述

由嵌段共聚物(BCP)导向的介孔无机材料(MIM)因其高比表面积、大孔体积和可调孔径而备受关注。具有设计的介观和宏观结构的无机材料的结构层次结合了介孔性和定制宏观结构的优点,其中大孔增加了离子/质量传输以及承载客体材料的大容量,并且具有允许紧密堆积和低表面能的宏观颗粒形态。现有的用于制备具有层次结构的MIM的方法需要复杂的多步程序,包括制备牺牲宏观模板(例如泡沫和胶体球)。尽管在控制介孔材料的宏观结构方面付出了巨大努力,但在形成具有有序介孔性的结构层次方面仍然存在重大挑战。

在聚合物科学中,旋节线分解(SD)是一种物理现象,它能自发地产生从相互连接的网络到孤立液滴等各种各样的宏观异质结构。利用SD是一种有望实现对无机材料的宏观结构(例如大孔、颗粒形态)和介观结构(例如孔径和结构、组成)进行精确控制的方法。然而,由于缺乏能够控制无机前驱体/聚合物共混物复杂热力学相互作用和相分离动力学的有效体系,这种用于定制MIM结构层次的方法尚未得到探索。

在本综述中,我们展示了我们在开发结合聚合物共混物中独特的SD行为和BCP自组装的合成体系方面的最新研究进展。为了在MIM中产生大孔,我们利用了由含BCP的多组分共混物的设计淬火条件诱导的SD相互连接的宏观结构。这些策略能够独立控制纳米结构中大孔的尺寸,并且可以扩展到各种组成(例如碳、SiO、TiO、WO、TiNbO、TiN)。我们还通过使用由增加由BCP、均聚物和无机前驱体组成的聚合物共混物的混合熵罚诱导的SD,将MIM的宏观形态控制为球形颗粒(例如实心和空心介孔球)。此外,聚合物之间的界面张力决定了MIM的宏观形态,从各向同性到各向异性的介孔颗粒(例如扁球形、碗形、二维纳米片)。均聚物的界面状态决定了BCP导向的MIM的孔取向和颗粒形态。

我们还强调了具有层次结构的MIM在能量存储装置中的应用。产生的大孔促进了锂离子电池中的离子/质量传输以及锂硫电池中大量硫的稳定容纳。MIM的设计形态有利于在钾离子电池中作为电极材料实现高堆积密度,从而实现高体积容量。

SD驱动的MIM结构层次合成的最新进展将启发如何将聚合物科学用作制备设计无机材料的平台。此外,拓宽聚合物和组成范围将引领MIM在各个领域的设计和应用的新前沿。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验