Suppr超能文献

傅里叶方法在任意轮廓非均匀介质有效深度计算中的扩展。

Extension of Fourier methods to the calculation of effective depths in heterogeneous media of arbitrary contour.

作者信息

Starkschall G

出版信息

Med Phys. 1986 Nov-Dec;13(6):925-7. doi: 10.1118/1.595820.

Abstract

The description of patient contours and internal structures by means of truncated Fourier series can be extended to continuous contours of arbitrary shape and location by expressing the x and z Cartesian coordinates of the contour as independent Fourier series in a parameter t. An analytic equation for the intersection of the contour and a ray line is then written as an equation in the parameter t. The equation can be solved using numerical methods yielding the Cartesian coordinates of the intersection point directly.

摘要

通过将轮廓的x和z笛卡尔坐标表示为参数t的独立傅里叶级数,借助截断傅里叶级数对患者轮廓和内部结构的描述可以扩展到任意形状和位置的连续轮廓。然后将轮廓与射线的交点的解析方程写为参数t的方程。该方程可以使用数值方法求解,直接得出交点的笛卡尔坐标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验