Suppr超能文献

使用谐振子或VSCF模式的半随机微扰理论的振动热浴组态相互作用。

Vibrational heat-bath configuration interaction with semistochastic perturbation theory using harmonic oscillator or VSCF modals.

作者信息

Tran Henry K, Berkelbach Timothy C

机构信息

Department of Chemistry, Columbia University, New York, New York 10027, USA.

出版信息

J Chem Phys. 2023 Nov 21;159(19). doi: 10.1063/5.0172702.

Abstract

Vibrational heat-bath configuration interaction (VHCI)-a selected configuration interaction technique for vibrational structure theory-has recently been developed in two independent works [J. H. Fetherolf and T. C. Berkelbach, J. Chem. Phys. 154, 074104 (2021); A. U. Bhatty and K. R. Brorsen, Mol. Phys. 119, e1936250 (2021)], where it was shown to provide accuracy on par with the most accurate vibrational structure methods with a low computational cost. Here, we eliminate the memory bottleneck of the second-order perturbation theory correction using the same (semi)stochastic approach developed previously for electronic structure theory. This allows us to treat, in an unbiased manner, much larger perturbative spaces, which are necessary for high accuracy in large systems. Stochastic errors are easily controlled to be less than 1 cm-1. We also report two other developments: (i) we propose a new heat-bath criterion and an associated exact implicit sorting algorithm for potential energy surfaces expressible as a sum of products of one-dimensional potentials; (ii) we formulate VHCI to use a vibrational self-consistent field (VSCF) reference, as opposed to the harmonic oscillator reference configuration used in previous reports. Our tests are done with quartic and sextic force fields, for which we find that with VSCF, the minor improvements to accuracy are outweighed by the higher computational cost associated the matrix element evaluations. We expect VSCF-based VHCI to be important for more general potential representations, for which the harmonic oscillator basis function integrals are no longer analytic.

摘要

振动热浴组态相互作用(VHCI)——一种用于振动结构理论的选定组态相互作用技术——最近在两项独立的研究工作中得到了发展[J. H. 费瑟罗夫和T. C. 伯克巴赫,《化学物理杂志》154, 074104 (2021);A. U. 巴蒂和K. R. 布罗森,《分子物理学》119, e1936250 (2021)],研究表明该技术能以较低的计算成本提供与最精确的振动结构方法相当的精度。在此,我们使用先前为电子结构理论开发的相同(半)随机方法消除了二阶微扰理论校正的内存瓶颈。这使我们能够以无偏的方式处理大得多的微扰空间,而这对于大系统的高精度是必要的。随机误差很容易控制在小于1厘米⁻¹ 。我们还报告了另外两项进展:(i)我们针对可表示为一维势乘积之和的势能面提出了一种新的热浴判据和一种相关的精确隐式排序算法;(ii)我们将VHCI公式化为使用振动自洽场(VSCF)参考,而不是先前报告中使用的谐振子参考组态。我们使用四次和六次力场进行了测试,发现对于这些力场,使用VSCF时,精度的微小提高被与矩阵元计算相关的更高计算成本所抵消。我们预计基于VSCF的VHCI对于更一般的势表示很重要,对于这种表示,谐振子基函数积分不再是解析的。

相似文献

2
Vibrational heat-bath configuration interaction.
J Chem Phys. 2021 Feb 21;154(7):074104. doi: 10.1063/5.0035454.
3
Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory.
J Chem Theory Comput. 2017 Apr 11;13(4):1595-1604. doi: 10.1021/acs.jctc.6b01028. Epub 2017 Mar 23.
4
Vibrational anharmonicity of small gold and silver clusters using the VSCF method.
Phys Chem Chem Phys. 2016 Jan 7;18(1):529-49. doi: 10.1039/c5cp05283a. Epub 2015 Nov 30.
6
Optimized coordinates for anharmonic vibrational structure theories.
J Chem Phys. 2012 Nov 28;137(20):204118. doi: 10.1063/1.4767776.
7
Efficient configuration selection scheme for vibrational second-order perturbation theory.
J Chem Phys. 2007 Jul 21;127(3):034111. doi: 10.1063/1.2748774.
8
First-principles theories for anharmonic lattice vibrations.
J Chem Phys. 2010 Jul 21;133(3):034109. doi: 10.1063/1.3462237.
9
Size-extensive vibrational self-consistent field method.
J Chem Phys. 2011 Oct 7;135(13):134108. doi: 10.1063/1.3644895.
10
Franck-Condon factors based on anharmonic vibrational wave functions of polyatomic molecules.
J Chem Phys. 2006 Jul 7;125(1):014109. doi: 10.1063/1.2209676.

引用本文的文献

1
Benchmarking Vibrational Spectra: 5000 Accurate Eigenstates of Acetonitrile Using Tree Tensor Network States.
J Phys Chem Lett. 2025 Apr 24;16(16):3991-3997. doi: 10.1021/acs.jpclett.5c00782. Epub 2025 Apr 14.
2
Flexible DMRG-Based Framework for Anharmonic Vibrational Calculations.
J Chem Theory Comput. 2023 Dec 26;19(24):9329-9343. doi: 10.1021/acs.jctc.3c00902. Epub 2023 Dec 7.

本文引用的文献

2
Relativistic Semistochastic Heat-Bath Configuration Interaction.
J Chem Theory Comput. 2023 Feb 14;19(3):848-855. doi: 10.1021/acs.jctc.2c01025. Epub 2023 Jan 26.
3
A flexible approach to vibrational perturbation theory using sparse matrix methods.
J Chem Phys. 2022 Feb 7;156(5):054107. doi: 10.1063/5.0080892.
4
Vibrational heat-bath configuration interaction.
J Chem Phys. 2021 Feb 21;154(7):074104. doi: 10.1063/5.0035454.
6
Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction.
Chem Rev. 2020 Aug 12;120(15):7152-7218. doi: 10.1021/acs.chemrev.9b00813. Epub 2020 Jun 29.
7
DFT-Calculated IR Spectrum Amide I, II, and III Band Contributions of -Methylacetamide Fine Components.
ACS Omega. 2020 Apr 8;5(15):8572-8578. doi: 10.1021/acsomega.9b04421. eCollection 2020 Apr 21.
8
Vibrational adaptive sampling configuration interaction.
J Chem Phys. 2019 Oct 28;151(16):164103. doi: 10.1063/1.5126510.
9
Some Applications of Vibrational Spectroscopy for the Analysis of Polymers and Polymer Composites.
Polymers (Basel). 2019 Jul 8;11(7):1159. doi: 10.3390/polym11071159.
10
Fast semistochastic heat-bath configuration interaction.
J Chem Phys. 2018 Dec 7;149(21):214110. doi: 10.1063/1.5055390.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验