Goodrich Jesse A, Wang Hongxu, Walker Douglas I, Lin Xiangping, Hu Xin, Alderete Tanya L, Chen Zhanghua, Valvi Damaskini, Baumert Brittney O, Rock Sarah, Berhane Kiros, Gilliland Frank D, Goran Michael I, Jones Dean P, Conti David V, Chatzi Leda
Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA.
Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA.
Diabetes Care. 2024 Jan 1;47(1):151-159. doi: 10.2337/dc23-0327.
Prediabetes in young people is an emerging epidemic that disproportionately impacts Hispanic populations. We aimed to develop a metabolite-based prediction model for prediabetes in young people with overweight/obesity at risk for type 2 diabetes.
In independent, prospective cohorts of Hispanic youth (discovery; n = 143 without baseline prediabetes) and predominately Hispanic young adults (validation; n = 56 without baseline prediabetes), we assessed prediabetes via 2-h oral glucose tolerance tests. Baseline metabolite levels were measured in plasma from a 2-h postglucose challenge. In the discovery cohort, least absolute shrinkage and selection operator regression with a stability selection procedure was used to identify robust predictive metabolites for prediabetes. Predictive performance was evaluated in the discovery and validation cohorts using logistic regression.
Two metabolites (allylphenol sulfate and caprylic acid) were found to predict prediabetes beyond known risk factors, including sex, BMI, age, ethnicity, fasting/2-h glucose, total cholesterol, and triglycerides. In the discovery cohort, the area under the receiver operator characteristic curve (AUC) of the model with metabolites and known risk factors was 0.80 (95% CI 0.72-0.87), which was higher than the risk factor-only model (AUC 0.63 [0.53-0.73]; P = 0.001). When the predictive models developed in the discovery cohort were applied to the replication cohort, the model with metabolites and risk factors predicted prediabetes more accurately (AUC 0.70 [95% CI 40.55-0.86]) than the same model without metabolites (AUC 0.62 [0.46-0.79]).
Metabolite profiles may help improve prediabetes prediction compared with traditional risk factors. Findings suggest that medium-chain fatty acids and phytochemicals are early indicators of prediabetes in high-risk youth.
年轻人的糖尿病前期是一种新出现的流行病,对西班牙裔人群的影响尤为严重。我们旨在为有2型糖尿病风险的超重/肥胖年轻人开发一种基于代谢物的糖尿病前期预测模型。
在西班牙裔青年独立前瞻性队列(发现队列;n = 143,无基线糖尿病前期)和主要为西班牙裔的年轻成年人队列(验证队列;n = 56,无基线糖尿病前期)中,我们通过2小时口服葡萄糖耐量试验评估糖尿病前期。在葡萄糖激发后2小时的血浆中测量基线代谢物水平。在发现队列中,使用带有稳定性选择程序的最小绝对收缩和选择算子回归来识别糖尿病前期的稳健预测代谢物。使用逻辑回归在发现队列和验证队列中评估预测性能。
发现两种代谢物(烯丙基苯酚硫酸盐和辛酸)可在已知风险因素(包括性别、体重指数、年龄、种族、空腹/2小时血糖、总胆固醇和甘油三酯)之外预测糖尿病前期。在发现队列中,包含代谢物和已知风险因素的模型的受试者操作特征曲线下面积(AUC)为0.80(95%CI 0.72 - 0.87),高于仅包含风险因素的模型(AUC 0.63 [0.53 - 0.73];P = 0.001)。当将在发现队列中开发的预测模型应用于复制队列时,包含代谢物和风险因素的模型比不包含代谢物的相同模型更准确地预测糖尿病前期(AUC 0.70 [95%CI 40.55 - 0.86])(AUC 0.62 [0.46 - 0.79])。
与传统风险因素相比,代谢物谱可能有助于改善糖尿病前期预测。研究结果表明,中链脂肪酸和植物化学物质是高危青年糖尿病前期的早期指标。