Suppr超能文献

神经动力方法在多智能体分布式优化中的应用。

Neurodynamic approaches for multi-agent distributed optimization.

机构信息

School of Mathematics, Southeast University, Nanjing 210096, China.

Scientific Research Institute of Multiprocessor Computer Systems, Southern Federal University, Taganrog, 347928, Russia.

出版信息

Neural Netw. 2024 Jan;169:673-684. doi: 10.1016/j.neunet.2023.11.025. Epub 2023 Nov 10.

Abstract

This paper considers a class of multi-agent distributed convex optimization with a common set of constraints and provides several continuous-time neurodynamic approaches. In problem transformation, l and l penalty methods are used respectively to cast the linear consensus constraint into the objective function, which avoids introducing auxiliary variables and only involves information exchange among primal variables in the process of solving the problem. For nonsmooth cost functions, two differential inclusions with projection operator are proposed. Without convexity of the differential inclusions, the asymptotic behavior and convergence properties are explored. For smooth cost functions, by harnessing the smoothness of l penalty function, finite- and fixed-time convergent algorithms are provided via a specifically designed average consensus estimator. Finally, several numerical examples in the multi-agent simulation environment are conducted to illustrate the effectiveness of the proposed neurodynamic approaches.

摘要

本文考虑了一类具有公共约束集的多智能体分布式凸优化问题,并提供了几种连续时间神经动力学方法。在问题转换中,分别使用 l 和 l 惩罚方法将线性一致性约束项转换到目标函数中,这避免了引入辅助变量,并且在求解问题的过程中只涉及到原始变量之间的信息交换。对于非光滑的代价函数,提出了两个带有投影算子的微分包含。对于非凸微分包含,研究了其渐近行为和收敛特性。对于光滑的代价函数,通过利用 l 惩罚函数的光滑性,通过设计一个特定的平均一致性估计器,给出了有限时间和固定时间收敛的算法。最后,在多智能体仿真环境中进行了几个数值示例,以验证所提出的神经动力学方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验