Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
J Mol Biol. 2024 Jan 15;436(2):168367. doi: 10.1016/j.jmb.2023.168367. Epub 2023 Nov 14.
Mycobacterium tuberculosis is the causative agent of Tuberculosis. During the host response to infection, the bacterium is exposed to both reactive oxygen species and nitrogen intermediates that can cause DNA damage. It is becoming clear that the DNA damage response in Mtb and related actinobacteria function via distinct pathways as compared to well-studied model bacteria. For example, we have previously shown that the DNA repair helicase UvrD1 is activated for processive unwinding via redox-dependent dimerization. In addition, mycobacteria contain a homo-dimeric Ku protein, homologous to the eukaryotic Ku70/Ku80 dimer, that plays roles in double-stranded break repair via non-homologous end-joining. Kuhas been shown to stimulate the helicase activity of UvrD1, but the molecular mechanism, as well as which redox form of UvrD1 is activated, is unknown. We show here that Ku specifically stimulates multi-round unwinding by UvrD1 monomers which are able to slowly unwind DNA, but at rates 100-fold slower than the dimer. We also demonstrate that the UvrD1 C-terminal Tudor domain is required for the formation of a Ku-UvrD1 protein complex and activation. We show that Mtb Ku dimers bind with high nearest neighbor cooperativity to duplex DNA and that UvrD1 activation is observed when the DNA substrate is bound with two or three Ku dimers. Our observations reveal aspects of the interactions between DNA, Mtb Ku, and UvrD1 and highlight the potential role of UvrD1 in multiple DNA repair pathways through different mechanisms of activation.
结核分枝杆菌是结核病的病原体。在宿主对感染的反应过程中,细菌会暴露于活性氧和氮中间产物中,这些物质会导致 DNA 损伤。越来越清楚的是,与经过充分研究的模式细菌相比,结核分枝杆菌和相关放线菌中的 DNA 损伤反应通过不同的途径发挥作用。例如,我们之前已经表明,DNA 修复解旋酶 UvrD1 通过氧化还原依赖的二聚化激活进行连续解旋。此外,分枝杆菌含有一种同源二聚体 Ku 蛋白,与真核生物的 Ku70/Ku80 二聚体同源,通过非同源末端连接在双链断裂修复中发挥作用。已经表明 Ku 能够刺激 UvrD1 的解旋酶活性,但分子机制以及哪种氧化还原形式的 UvrD1 被激活尚不清楚。我们在这里表明,Ku 特异性地刺激 UvrD1 单体的多轮解旋,UvrD1 单体能够缓慢解旋 DNA,但速度比二聚体慢 100 倍。我们还证明了 UvrD1 的 C 端 Tudor 结构域是形成 Ku-UvrD1 蛋白复合物和激活所必需的。我们表明,Mt b Ku 二聚体以高近邻协同性结合双链 DNA,并且当 DNA 底物与两个或三个 Ku 二聚体结合时观察到 UvrD1 的激活。我们的观察结果揭示了 DNA、Mt b Ku 和 UvrD1 之间相互作用的各个方面,并强调了 UvrD1 通过不同的激活机制在多种 DNA 修复途径中发挥作用的潜力。