Suppr超能文献

利用复杂概率犹豫模糊 N-软集信息识别南非的精神障碍

Identification of mental disorders in South Africa using complex probabilistic hesitant fuzzy N-soft aggregation information.

机构信息

Institute of Mathematics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.

School of Business Studies, Unicaf University, Longacres, Lusaka, Zambia.

出版信息

Sci Rep. 2023 Nov 16;13(1):20091. doi: 10.1038/s41598-023-45991-7.

Abstract

This paper aims to address the challenges faced by medical professionals in identifying mental disorders. These mental health issues are an increasing public health concern, and middle-income nations like South Africa are negatively impacted. Mental health issues pose a substantial public health concern in South Africa, putting forth extensive impacts on both individuals and society broadly. Insufficient funding for mental health remains the greatest barrier in this country. In order to meet the diverse and complex requirements of patients effective decision making in the treatment of mental disorders is crucial. For this purpose, we introduced the novel concept of the complex probabilistic hesitant fuzzy N-soft set (CPHFNSS) for modeling the unpredictability and uncertainty effectively. Our approach improves the precision with which certain traits connected to different types of mental conditions are recognized by using the competence of experts. We developed the fundamental operations (like extended and restricted intersection, extended and restricted union, weak, top, and bottom weak complements) with examples. We also developed the aggregation operators and their many features, along with their proofs and theorems, for CPHFNSS. By implementing these operators in the aggregation process, one could choose a combination of characteristics. Further, we introduced the novel score function, which is used to determine the optimal choice among them. In addition, we created an algorithm with numerical illustrations for decision making in which physicians employ CPHFNS data to diagnose a specific condition. Finally, comparative analyses confirm the practicability and efficacy of the technique that arises from the model developed in this paper.

摘要

本文旨在探讨医学专业人员在识别精神障碍方面所面临的挑战。这些心理健康问题是一个日益严重的公共卫生关注点,像南非这样的中等收入国家受到了负面影响。心理健康问题是南非的一个重大公共卫生问题,对个人和整个社会都产生了广泛的影响。精神卫生资金不足仍然是这个国家面临的最大障碍。为了满足患者多样化和复杂的需求,在治疗精神障碍方面进行有效的决策至关重要。为此,我们引入了复杂概率犹豫模糊 N-软集(CPHFNSS)的新概念,以有效地建模不可预测性和不确定性。我们的方法通过利用专家的能力,提高了识别与不同类型精神状况相关的特定特征的精度。我们开发了基本操作(如扩展和限制交集、扩展和限制并集、弱、顶、底弱补),并提供了示例。我们还为 CPHFNSS 开发了聚合算子及其许多特性,以及证明和定理。通过在聚合过程中实施这些算子,可以选择一组特征的组合。此外,我们引入了新的得分函数,用于在它们之间确定最佳选择。此外,我们创建了一个带有数值说明的决策算法,医生使用 CPHFNS 数据来诊断特定的情况。最后,比较分析证实了本文所提出的模型所产生的技术的实用性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7210/10654716/8e91ff2ec809/41598_2023_45991_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验