School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
J Environ Sci (China). 2024 Mar;137:271-286. doi: 10.1016/j.jes.2022.12.010. Epub 2022 Dec 20.
The synthesis process of conventional Mn-based denitrification catalysts is relatively complex and expensive. In this paper, a resource application of chlorella was proposed, and a Chlorella@Mn composite denitrification catalyst was innovatively synthesized by electrostatic interaction. The Chlorella@Mn composite denitrification catalyst prepared under the optimal conditions (0.54 g/L Mn concentration, 20 million chlorellas/mL concentration, 450°C calcination temperature) exhibited a well-developed pore structure and large specific surface area (122 m/g). Compared with MnOx alone, the Chlorella@Mn composite catalyst achieved superior performance, with ∼100% NH selective catalytic reduction (NH-SCR) denitrification activity at 100-225°C. The results of NH temperature-programmed desorption (NH-TPD) and H temperature-programmed reduction (H-TPR) showed that the catalyst had strong acid sites and good redox properties. Zeta potential testing showed that the electronegativity of the chlorella cell surface could be used to enrich with Mn. X-ray photoelectron spectroscopy (XPS) confirmed that Chlorella@Mn had a high content of Mn and surface chemisorbed oxygen. In-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) experimental results showed that both Langmuir-Hinshelwood (L-H) and Eley-Rideal (E-R) mechanisms play a role in the denitrification process on the surface of the Chlorella@Mn catalyst, where the main intermediate nitrate species is monodentate nitrite. The presence of SO promoted the generation and strengthening of Brønsted acid sites, but also generated more sulfate species on the surface, thereby reducing the denitrification activity of the Chlorella@Mn catalyst. The Chlorella@Mn composite catalyst had the characteristics of short preparation time, simple process and low cost, making it promising for industrial application.
传统的 Mn 基脱硝催化剂的合成过程较为复杂且昂贵。本文提出了一种小球藻资源的应用,创新性地通过静电相互作用合成了小球藻@Mn 复合脱硝催化剂。在最佳条件下(Mn 浓度为 0.54 g/L、小球藻浓度为 2000 万/mL、煅烧温度为 450°C)制备的小球藻@Mn 复合脱硝催化剂具有发达的孔结构和较大的比表面积(122 m/g)。与单独的 MnOx 相比,小球藻@Mn 复合催化剂表现出卓越的性能,在 100-225°C 时具有约 100%的 NH 选择性催化还原(NH-SCR)脱硝活性。NH 程序升温脱附(NH-TPD)和 H 程序升温还原(H-TPR)的结果表明,催化剂具有较强的酸位和良好的氧化还原性能。动电电位测试表明,小球藻细胞表面的电负性可用于富集 Mn。X 射线光电子能谱(XPS)证实了小球藻@Mn 具有高含量的 Mn 和表面化学吸附氧。原位漫反射红外傅里叶变换光谱(in-situ DRIFTS)实验结果表明,Langmuir-Hinshelwood(L-H)和 Eley-Rideal(E-R)两种机制都在小球藻@Mn 催化剂表面的脱硝过程中起作用,其中主要的中间硝酸盐物种是单齿亚硝酸盐。SO 的存在促进了 Brønsted 酸位的生成和增强,但也在表面生成了更多的硫酸盐物种,从而降低了小球藻@Mn 催化剂的脱硝活性。小球藻@Mn 复合催化剂具有制备时间短、工艺简单、成本低的特点,有望在工业应用中得到推广。