Suppr超能文献

揭示青少年自杀倾向:使用多种机器学习算法的保护和风险因素的整体分析。

Unveiling Adolescent Suicidality: Holistic Analysis of Protective and Risk Factors Using Multiple Machine Learning Algorithms.

机构信息

Department of Psychology, University of Oslo, Oslo, Norway.

Department of Mental Health and Suicide, Norwegian Institute of Public Health, Oslo, Norway.

出版信息

J Youth Adolesc. 2024 Mar;53(3):507-525. doi: 10.1007/s10964-023-01892-6. Epub 2023 Nov 20.

Abstract

Adolescent suicide attempts are on the rise, presenting a significant public health concern. Recent research aimed at improving risk assessment for adolescent suicide attempts has turned to machine learning. But no studies to date have examined the performance of stacked ensemble algorithms, which are more suitable for low-prevalence conditions. The existing machine learning-based research also lacks population-representative samples, overlooks protective factors and their interplay with risk factors, and neglects established theories on suicidal behavior in favor of purely algorithmic risk estimation. The present study overcomes these shortcomings by comparing the performance of a stacked ensemble algorithm with a diverse set of algorithms, performing a holistic item analysis to identify both risk and protective factors on a comprehensive data, and addressing the compatibility of these factors with two competing theories of suicide, namely, The Interpersonal Theory of Suicide and The Strain Theory of Suicide. A population-representative dataset of 173,664 Norwegian adolescents aged 13 to 18 years (mean = 15.14, SD = 1.58, 50.5% female) with a 4.65% rate of reported suicide attempt during the past 12 months was analyzed. Five machine learning algorithms were trained for suicide attempt risk assessment. The stacked ensemble model significantly outperformed other algorithms, achieving equal sensitivity and a specificity of 90.1%, AUC of 96.4%, and AUCPR of 67.5%. All algorithms found recent self-harm to be the most important indicator of adolescent suicide attempt. Exploratory factor analysis suggested five additional risk domains, which we labeled internalizing problems, sleep disturbance, disordered eating, lack of optimism regarding future education and career, and victimization. The identified factors provided stronger support for The Interpersonal Theory of Suicide than for The Strain Theory of Suicide. An enhancement to The Interpersonal Theory based on the risk and protective factors identified by holistic item analysis is presented.

摘要

青少年自杀未遂的发生率呈上升趋势,成为一个重大的公共卫生问题。最近的研究旨在改善青少年自杀未遂的风险评估,转向机器学习。但迄今为止,尚无研究探讨堆叠集成算法的性能,而堆叠集成算法更适用于低流行率的情况。现有的基于机器学习的研究也缺乏具有代表性的人群样本,忽略了保护因素及其与风险因素的相互作用,并且忽视了自杀行为的既定理论,而倾向于纯粹的算法风险估计。本研究通过比较堆叠集成算法和一组多样化算法的性能,对综合数据进行整体项目分析,以确定风险和保护因素,以及解决这些因素与两种相互竞争的自杀理论(人际理论和应激理论)的兼容性,克服了这些缺点。使用一个具有代表性的 173664 名年龄在 13 至 18 岁(平均 15.14,标准差 1.58,50.5%为女性)的挪威青少年的人群代表性数据集,这些青少年在过去 12 个月内报告自杀未遂的比例为 4.65%。对五种机器学习算法进行了自杀未遂风险评估的训练。堆叠集成模型的表现明显优于其他算法,其敏感性和特异性均为 90.1%,AUC 为 96.4%,AUCPR 为 67.5%。所有算法均发现近期的自我伤害是青少年自杀未遂的最重要指标。探索性因素分析表明了五个额外的风险领域,我们将其标记为内化问题、睡眠障碍、饮食失调、对未来教育和职业缺乏乐观态度以及受害。确定的因素为人际理论提供了更强的支持,而不是应激理论。基于整体项目分析确定的风险和保护因素,提出了对人际理论的增强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b401/10838236/c72ce6da3b42/10964_2023_1892_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验