Suppr超能文献

基于量子点的超组装以最大化基于颜色的智能手机相机荧光多重检测

Supra-Quantum Dot Assemblies to Maximize Color-Based Multiplexed Fluorescence Detection with a Smartphone Camera.

机构信息

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada.

出版信息

ACS Sens. 2023 Dec 22;8(12):4686-4695. doi: 10.1021/acssensors.3c01741. Epub 2023 Nov 20.

Abstract

Photoluminescence (PL) imaging and bioanalysis with smartphone-based devices are of growing interest for point-of-care/point-of-need diagnostics. Strategies for maximizing sensitivity have been explored in this context, but color multiplexing has been very limited, with its maximum level unexplored. Here, we evaluated color multiplexing with smartphone-based PL imaging by using supra-nanoparticle assemblies of quantum dots (supra-QDs). These materials were prepared as composite colors that were tailored to the red-green-blue (RGB) color space of smartphone cameras by coassembling different ratios of R-, G-, and B-emitting QDs on a silica nanoparticle scaffold. The supra-QDs were characterized and used to label cell-sized objects that were measured under flow with a smartphone-based device. Each color followed an approximately linear trajectory in the RGB space, and training of support vector machine models enabled color classification with overall accuracies ≥87% for 10-color multiplexing and better accuracies for fewer colors. Most misclassification occurred at low signal levels, such that establishing a nonclassifiable zone near the origin of RGB color space improved the overall 10-color classification accuracy to ≥94%. Similar improvements in accuracy with greater retention of data were possible with a probabilistic rather than a radial threshold. Simulations that were parameterized by experimental data suggested that ≥14-color multiplexing with accuracies ≥90% should be possible with an optimized supra-QD color set. This study is an important foundation for advancing RGB color-based multiplexing for imaging and analyses with smartphone cameras and related charge-coupled device and CMOS color image sensor technologies.

摘要

基于智能手机的设备的光致发光 (PL) 成像和生物分析在即时 / 即时诊断方面越来越受到关注。在这种情况下,已经探索了用于最大限度提高灵敏度的策略,但颜色复用非常有限,其最大水平尚未得到探索。在这里,我们通过使用基于智能手机的 PL 成像来评估颜色复用,方法是使用量子点的超纳米粒子组装体 (超 QD)。通过在二氧化硅纳米颗粒支架上共组装不同比例的 R、G 和 B 发射 QD,将这些材料制备为与智能手机相机的红-绿-蓝 (RGB) 颜色空间相匹配的复合颜色。超 QD 进行了表征,并用于标记细胞大小的物体,这些物体在基于智能手机的设备下在流动条件下进行测量。每种颜色在 RGB 空间中都遵循近似线性轨迹,并且支持向量机模型的训练能够实现颜色分类,对于 10 色复用,总体准确率≥87%,对于更少的颜色,准确率更高。大多数错误分类发生在低信号水平下,因此在 RGB 颜色空间原点附近建立一个不可分类区域可以将总体 10 色分类准确率提高到≥94%。使用概率而不是径向阈值可以在保留更多数据的情况下获得类似的准确性提高。根据实验数据参数化的模拟表明,使用优化的超 QD 颜色集,应该可以实现≥14 色复用,准确率≥90%。这项研究为使用智能手机相机和相关电荷耦合器件和 CMOS 彩色图像传感器技术进行基于 RGB 颜色的成像和分析的多路复用提供了重要基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验