Arora Raagya, Waghmare Umesh, Rao C N R
Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560 064, India.
Sheikh Saqr Laboratory, JNCASR Jakkur, Bangalore, 560 064, India.
Angew Chem Int Ed Engl. 2024 Jan 2;63(1):e202313852. doi: 10.1002/anie.202313852. Epub 2023 Nov 30.
An unusual set of anomalous functional properties of rocksalt crystals of Group IV chalcogenides were recently linked to a kind of bonding termed as metavalent bonding (MVB) which involves violation of the 8-N rule. Precise mechanisms of MVB and the relevance of lone pair of Group IV cations are still debated. With restrictions of low dimensionality on the possible atomic coordination, 2D materials provide a rich platform for exploration of MVB. Here, we present first-principles theoretical analysis of the nature of bonding in five distinct 2D lattices of Group IV chalcogenides MX (M: Sn, Pb, Ge and X: S, Se, Te), in which the natural out-of-plane expression of the lone pair versus in-plane bonding can be systematically explored. While their honeycomb lattices respecting the 8-N rule are shown to exhibit covalent bonding, their square and orthorhombic structures exhibit MVB only in-plane, with cationic lone pair activating the out-of-plane structural puckering that controls their relative stability. Anomalies in Born-effective charges, dielectric constants, Grüneisen parameters occur only in their in-plane behaviour, confirming MVB is confined strictly to 2D and originates from p-p orbital interactions. Our work opens up directions for chemical design of MVB based 2D materials and their heterostructures.
最近,IV族硫族化合物的岩盐晶体一组不同寻常的异常功能特性与一种被称为变价键合(MVB)的键合方式联系在一起,这种键合方式涉及违反8-N规则。MVB的精确机制以及IV族阳离子孤对电子的相关性仍存在争议。由于可能的原子配位受到低维限制,二维材料为探索MVB提供了一个丰富的平台。在这里,我们对IV族硫族化合物MX(M:Sn、Pb、Ge;X:S、Se、Te)的五个不同二维晶格中的键合性质进行了第一性原理理论分析,其中可以系统地探索孤对电子的自然面外表达与面内键合的关系。虽然它们遵循8-N规则的蜂窝晶格显示出共价键合,但它们的方形和正交结构仅在面内表现出MVB,阳离子孤对电子激活了控制其相对稳定性的面外结构褶皱。玻恩有效电荷、介电常数、格林艾森参数的异常仅出现在它们的面内行为中,这证实了MVB严格局限于二维,并且起源于p-p轨道相互作用。我们的工作为基于MVB的二维材料及其异质结构的化学设计开辟了方向。