Department of Biotechnology and Food Science, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
VTT Technical Research Centre of Finland, Espoo, Finland.
BMC Bioinformatics. 2023 Nov 21;24(1):438. doi: 10.1186/s12859-023-05506-7.
Use of alternative non-Saccharomyces yeasts in wine and beer brewing has gained more attention the recent years. This is both due to the desire to obtain a wider variety of flavours in the product and to reduce the final alcohol content. Given the metabolic differences between the yeast species, we wanted to account for some of the differences by using in silico models.
We created and studied genome-scale metabolic models of five different non-Saccharomyces species using an automated processes. These were: Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora osmophila, Torulaspora delbrueckii and Kluyveromyces lactis. Using the models, we predicted that M. pulcherrima, when compared to the other species, conducts more respiration and thus produces less fermentation products, a finding which agrees with experimental data. Complex I of the electron transport chain was to be present in M. pulcherrima, but absent in the others. The predicted importance of Complex I was diminished when we incorporated constraints on the amount of enzymatic protein, as this shifts the metabolism towards fermentation.
Our results suggest that Complex I in the electron transport chain is a key differentiator between Metschnikowia pulcherrima and the other yeasts considered. Yet, more annotations and experimental data have the potential to improve model quality in order to increase fidelity and confidence in these results. Further experiments should be conducted to confirm the in vivo effect of Complex I in M. pulcherrima and its respiratory metabolism.
近年来,在葡萄酒和啤酒酿造中使用替代非酿酒酵母引起了更多的关注。这既是为了获得产品中更广泛的风味,也是为了降低最终的酒精含量。鉴于酵母物种之间的代谢差异,我们希望通过使用计算机模型来解释其中的一些差异。
我们使用自动化流程为五种不同的非酿酒酵母物种创建并研究了基因组规模的代谢模型。这些物种是:美丽假丝酵母、耐热酒香酵母、汉逊德巴利酵母、德巴利酵母和乳酸克鲁维酵母。使用这些模型,我们预测与其他物种相比,美丽假丝酵母进行更多的呼吸作用,因此产生较少的发酵产物,这一发现与实验数据一致。电子传递链中的复合体 I 存在于美丽假丝酵母中,但不存在于其他物种中。当我们将酶蛋白的数量限制纳入模型时,预测复合体 I 的重要性降低,因为这会使代谢向发酵方向转移。
我们的研究结果表明,电子传递链中的复合体 I 是美丽假丝酵母与其他考虑的酵母之间的关键区别因素。然而,更多的注释和实验数据有可能提高模型的质量,以增加这些结果的保真度和可信度。应进行进一步的实验来验证复合体 I 在美丽假丝酵母中的体内作用及其呼吸代谢。