Potes Yaiza, Díaz-Luis Andrea, Bermejo-Millo Juan C, Pérez-Martínez Zulema, de Luxán-Delgado Beatriz, Rubio-González Adrian, Menéndez-Valle Iván, Gutiérrez-Rodríguez José, Solano Juan J, Caballero Beatriz, Vega-Naredo Ignacio, Coto-Montes Ana
Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain.
Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain.
Antioxidants (Basel). 2023 Nov 3;12(11):1962. doi: 10.3390/antiox12111962.
Leptin is critically compromised in the major common forms of obesity. Skeletal muscle is the main effector tissue for energy modification that occurs as a result of the effect of endocrine axes, such as leptin signaling. Our study was carried out using skeletal muscle from a leptin-deficient animal model, in order to ascertain the importance of this hormone and to identify the major skeletal muscle mechanisms affected. We also examined the therapeutic role of melatonin against leptin-induced muscle wasting. Here, we report that leptin deficiency stimulates fatty acid β-oxidation, which results in mitochondrial uncoupling and the suppression of mitochondrial oxidative damage; however, it increases cytosolic oxidative damage. Thus, different nutrient-sensing pathways are disrupted, impairing proteostasis and promoting lipid anabolism, which induces myofiber degeneration and drives oxidative type I fiber conversion. Melatonin treatment plays a significant role in reducing cellular oxidative damage and regulating energy homeostasis and fuel utilization. Melatonin is able to improve both glucose and mitochondrial metabolism and partially restore proteostasis. Taken together, our study demonstrates melatonin to be a decisive mitochondrial function-fate regulator in skeletal muscle, with implications for resembling physiological energy requirements and targeting glycolytic type II fiber recovery.
瘦素在主要常见的肥胖形式中严重受损。骨骼肌是因瘦素信号等内分泌轴作用而发生能量调节的主要效应组织。我们的研究使用了来自瘦素缺乏动物模型的骨骼肌,以确定这种激素的重要性并确定受影响的主要骨骼肌机制。我们还研究了褪黑素对瘦素诱导的肌肉萎缩的治疗作用。在此,我们报告瘦素缺乏会刺激脂肪酸β-氧化,导致线粒体解偶联并抑制线粒体氧化损伤;然而,它会增加胞质氧化损伤。因此,不同的营养感知途径被破坏,损害蛋白质稳态并促进脂质合成代谢,从而诱导肌纤维变性并驱动氧化型I型纤维转化。褪黑素治疗在减少细胞氧化损伤、调节能量稳态和燃料利用方面发挥着重要作用。褪黑素能够改善葡萄糖和线粒体代谢,并部分恢复蛋白质稳态。综上所述,我们的研究表明褪黑素是骨骼肌中决定性的线粒体功能-命运调节因子,对类似生理能量需求和靶向糖酵解型II型纤维恢复具有重要意义。