Suppr超能文献

基于机器学习的动脉自旋标记磁共振成像对不同运动亚型帕金森病的自动分类

Auto-Classification of Parkinson's Disease with Different Motor Subtypes Using Arterial Spin Labelling MRI Based on Machine Learning.

作者信息

Xiong Jinhua, Zhu Haiyan, Li Xuhang, Hao Shangci, Zhang Yueyi, Wang Zijian, Xi Qian

机构信息

Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New Area, Shanghai 200120, China.

Department of Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Putuo District, Shanghai 200065, China.

出版信息

Brain Sci. 2023 Oct 29;13(11):1524. doi: 10.3390/brainsci13111524.

Abstract

The purpose of this study was to automatically classify different motor subtypes of Parkinson's disease (PD) on arterial spin labelling magnetic resonance imaging (ASL-MRI) data using support vector machine (SVM). This study included 38 subjects: 21 PD patients and 17 normal controls (NCs). Based on the Unified Parkinson's Disease Rating Scale (UPDRS) subscores, patients were divided into the tremor-dominant (TD) subtype and the postural instability gait difficulty (PIGD) subtype. The subjects were in a resting state during the acquisition of ASL-MRI data. The automated anatomical atlas 3 (AAL3) template was registered to obtain an ASL image of the same size and shape. We obtained the voxel values of 170 brain regions by considering the location coordinates of these regions and then normalized the data. The length of the feature vector depended on the number of voxel values in each brain region. Three binary classification models were utilized for classifying subjects' data, and we applied SVM to classify voxels in the brain regions. The left subgenual anterior cingulate cortex (ACC_sub_L) was clearly distinguished in both NCs and PD patients using SVM, and we obtained satisfactory diagnostic rates (accuracy = 92.31%, specificity = 96.97%, sensitivity = 84.21%, and AUCmax = 0.9585). For the right supramarginal gyrus (SupraMarginal_R), SVM distinguished the TD group from the other groups with satisfactory diagnostic rates (accuracy = 84.21%, sensitivity = 63.64%, specificity = 92.59%, and AUCmax = 0.9192). For the right intralaminar of thalamus (Thal_IL_R), SVM distinguished the PIGD group from the other groups with satisfactory diagnostic rates (accuracy = 89.47%, sensitivity = 70.00%, specificity = 6.43%, and AUCmax = 0.9464). These results are consistent with the changes in blood perfusion related to PD subtypes. In addition, the sensitive brain regions of the TD group and PIGD group involve the brain regions where the cerebellothalamocortical (CTC) and the striatal thalamocortical (STC) loops are located. Therefore, it is suggested that the blood perfusion patterns of the two loops may be different. These characteristic brain regions could become potential imaging markers of cerebral blood flow to distinguish TD from PIGD. Meanwhile, our findings provide an imaging basis for personalised treatment, thereby optimising clinical diagnostic and treatment approaches.

摘要

本研究的目的是使用支持向量机(SVM)对动脉自旋标记磁共振成像(ASL-MRI)数据中的帕金森病(PD)不同运动亚型进行自动分类。本研究纳入了38名受试者:21名PD患者和17名正常对照(NC)。根据统一帕金森病评定量表(UPDRS)子评分,将患者分为震颤为主型(TD)亚型和姿势不稳步态障碍(PIGD)亚型。在采集ASL-MRI数据期间,受试者处于静息状态。配准自动解剖图谱3(AAL3)模板以获得相同大小和形状的ASL图像。通过考虑这些区域的位置坐标,我们获得了170个脑区的体素值,然后对数据进行归一化处理。特征向量的长度取决于每个脑区体素值的数量。使用三个二分类模型对受试者的数据进行分类,并应用SVM对脑区中的体素进行分类。使用SVM在NC和PD患者中均清晰区分出左侧膝下前扣带回皮质(ACC_sub_L),且我们获得了满意的诊断率(准确率 = 92.31%,特异性 = 96.97%,敏感性 = 84.21%,最大曲线下面积 = 0.9585)。对于右侧缘上回(SupraMarginal_R),SVM以满意的诊断率将TD组与其他组区分开来(准确率 = 84.21%,敏感性 = 63.64%,特异性 = 92.59%,最大曲线下面积 = 0.9192)。对于右侧丘脑板内核(Thal_IL_R),SVM以满意的诊断率将PIGD组与其他组区分开来(准确率 = 89.47%,敏感性 = 70.00%,特异性 = 6.43%,最大曲线下面积 = 0.9464)。这些结果与PD亚型相关的血流灌注变化一致。此外,TD组和PIGD组的敏感脑区涉及小脑丘脑皮质(CTC)和纹状体丘脑皮质(STC)环路所在的脑区。因此,提示这两个环路的血流灌注模式可能不同。这些特征性脑区可能成为区分TD与PIGD的脑血流潜在影像学标志物。同时,我们的研究结果为个性化治疗提供了影像学依据,从而优化临床诊断和治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bcf/10670033/757e73cb2cf3/brainsci-13-01524-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验