Suppr超能文献

使用深度学习模型解决溃疡性结肠炎(UC)严重程度评估中的观察者间差异。

Using a Deep Learning Model to Address Interobserver Variability in the Evaluation of Ulcerative Colitis (UC) Severity.

作者信息

Kim Jeong-Heon, Choe A Reum, Park Yehyun, Song Eun-Mi, Byun Ju-Ran, Cho Min-Sun, Yoo Youngeun, Lee Rena, Kim Jin-Sung, Ahn So-Hyun, Jung Sung-Ae

机构信息

Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.

Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul 03722, Republic of Korea.

出版信息

J Pers Med. 2023 Nov 8;13(11):1584. doi: 10.3390/jpm13111584.

Abstract

The use of endoscopic images for the accurate assessment of ulcerative colitis (UC) severity is crucial to determining appropriate treatment. However, experts may interpret these images differently, leading to inconsistent diagnoses. This study aims to address the issue by introducing a standardization method based on deep learning. We collected 254 rectal endoscopic images from 115 patients with UC, and five experts in endoscopic image interpretation assigned classification labels based on the Ulcerative Colitis Endoscopic Index of Severity (UCEIS) scoring system. Interobserver variance analysis of the five experts yielded an intraclass correlation coefficient of 0.8431 for UCEIS scores and a kappa coefficient of 0.4916 when the UCEIS scores were transformed into UC severity measures. To establish a consensus, we created a model that considered only the images and labels on which more than half of the experts agreed. This consensus model achieved an accuracy of 0.94 when tested with 50 images. Compared with models trained from individual expert labels, the consensus model demonstrated the most reliable prediction results.

摘要

使用内镜图像准确评估溃疡性结肠炎(UC)的严重程度对于确定合适的治疗方法至关重要。然而,专家对这些图像的解读可能存在差异,导致诊断不一致。本研究旨在通过引入一种基于深度学习的标准化方法来解决这一问题。我们收集了115例UC患者的254张直肠内镜图像,五位内镜图像解读专家根据溃疡性结肠炎内镜严重程度指数(UCEIS)评分系统给出分类标签。对这五位专家进行的观察者间差异分析得出,UCEIS评分的组内相关系数为0.8431,当将UCEIS评分转换为UC严重程度测量值时,kappa系数为0.4916。为了达成共识,我们创建了一个模型,该模型仅考虑超过半数专家达成一致的图像和标签。该共识模型在使用50张图像进行测试时,准确率达到了0.94。与根据个别专家标签训练的模型相比,共识模型展示出了最可靠的预测结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验