文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

谷氨酸N2A和N2B亚基N-甲基-D-天冬氨酸受体(NMDARs):它们在神经疾病中的作用及治疗性拮抗剂

GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases.

作者信息

Ladagu Amany Digal, Olopade Funmilayo Eniola, Adejare Adeboye, Olopade James Olukayode

机构信息

Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria.

Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria.

出版信息

Pharmaceuticals (Basel). 2023 Oct 30;16(11):1535. doi: 10.3390/ph16111535.


DOI:10.3390/ph16111535
PMID:38004401
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10674917/
Abstract

N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.

摘要

N-甲基-D-天冬氨酸受体(NMDARs)是对神经递质谷氨酸做出反应的离子通道,在钙离子通透性和中枢神经系统(CNS)的兴奋性神经传递中起关键作用。NMDARs由多种亚基组成,主要由两个必需的GluN1亚基(有八种剪接变体)以及调节亚基GluN2(GluN2A - 2D)和GluN3(GluN3A - B)形成。它们广泛分布于整个中枢神经系统,并参与突触传递、学习、记忆、可塑性和兴奋性毒性等重要功能。GluN2A和GluN2B亚基的存在对认知过程尤为重要,并且与帕金森病和阿尔茨海默病等神经退行性疾病密切相关。了解GluN2A和GluN2B NMDARs在神经病理学中的作用为主要神经系统疾病的潜在病因和复杂性提供了有价值的见解。这些知识对于使用药理学和分子方法开发针对GluN2A和GluN2B亚基的选择性拮抗剂至关重要。此类拮抗剂是一类有前景的NMDA受体抑制剂,有可能被开发成具有最佳治疗特性的神经保护药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/3dce85adb56c/pharmaceuticals-16-01535-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/4ca6a9df16bf/pharmaceuticals-16-01535-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/67bebc592545/pharmaceuticals-16-01535-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/13329dc4cb10/pharmaceuticals-16-01535-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/cb71de1fdd0e/pharmaceuticals-16-01535-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/ec6d7f7d89bb/pharmaceuticals-16-01535-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/d98062aa4487/pharmaceuticals-16-01535-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/c5e170730b3e/pharmaceuticals-16-01535-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/835249c66513/pharmaceuticals-16-01535-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/955082eec33e/pharmaceuticals-16-01535-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/67d015575cdc/pharmaceuticals-16-01535-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/b5594d907f91/pharmaceuticals-16-01535-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/13a1ad119b2a/pharmaceuticals-16-01535-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/4718e201709f/pharmaceuticals-16-01535-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/5b3523a81e41/pharmaceuticals-16-01535-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/e99f358f1d0c/pharmaceuticals-16-01535-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/0a1d00cdc305/pharmaceuticals-16-01535-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/b6184692d71e/pharmaceuticals-16-01535-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/3dce85adb56c/pharmaceuticals-16-01535-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/4ca6a9df16bf/pharmaceuticals-16-01535-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/67bebc592545/pharmaceuticals-16-01535-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/13329dc4cb10/pharmaceuticals-16-01535-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/cb71de1fdd0e/pharmaceuticals-16-01535-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/ec6d7f7d89bb/pharmaceuticals-16-01535-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/d98062aa4487/pharmaceuticals-16-01535-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/c5e170730b3e/pharmaceuticals-16-01535-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/835249c66513/pharmaceuticals-16-01535-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/955082eec33e/pharmaceuticals-16-01535-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/67d015575cdc/pharmaceuticals-16-01535-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/b5594d907f91/pharmaceuticals-16-01535-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/13a1ad119b2a/pharmaceuticals-16-01535-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/4718e201709f/pharmaceuticals-16-01535-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/5b3523a81e41/pharmaceuticals-16-01535-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/e99f358f1d0c/pharmaceuticals-16-01535-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/0a1d00cdc305/pharmaceuticals-16-01535-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/b6184692d71e/pharmaceuticals-16-01535-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d8/10674917/3dce85adb56c/pharmaceuticals-16-01535-g018.jpg

相似文献

[1]
GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases.

Pharmaceuticals (Basel). 2023-10-30

[2]
Targeting -Methyl-d-Aspartate Receptors in Neurodegenerative Diseases.

Int J Mol Sci. 2024-3-27

[3]
Opportunities for Precision Treatment of and Gain-of-Function Variants in Triheteromeric N-Methyl-D-Aspartate Receptors.

J Pharmacol Exp Ther. 2022-4

[4]
Early expression of GluN2A-containing NMDA receptors in a model of fragile X syndrome.

J Neurophysiol. 2024-4-1

[5]
Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits.

J Neurophysiol. 2012-12-5

[6]
Role of nonsynaptic GluN2B-containing NMDA receptors in excitotoxicity: evidence that fluoxetine selectively inhibits these receptors and may have neuroprotective effects.

Brain Res Bull. 2012-10-23

[7]
Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits.

Proc Natl Acad Sci U S A. 2017-7-31

[8]
Amyloid beta peptide 1-42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures.

Cell Calcium. 2011-12-15

[9]
Triheteromeric NMDA receptors: from structure to synaptic physiology.

Curr Opin Physiol. 2018-4

[10]
The glutamate receptor GluN2 subunit regulates synaptic trafficking of AMPA receptors in the neonatal mouse brain.

Eur J Neurosci. 2014-10

引用本文的文献

[1]
Striatal GluN2A gene suppression reduces L-DOPA-induced abnormal involuntary movements in parkinsonian rats.

Neuropharmacology. 2025-7-29

[2]
The expression of insulin signaling and N-methyl-D-aspartate receptor genes in areas of gray matter atrophy is associated with cognitive function in type 2 diabetes.

medRxiv. 2025-4-1

[3]
NMDA Receptors in Neurodevelopmental Disorders: Pathophysiology and Disease Models.

Int J Mol Sci. 2024-11-18

[4]
The Role of Photobiomodulation to Modulate Ion Channels in the Nervous System: A Systematic Review.

Cell Mol Neurobiol. 2024-11-23

[5]
and Schizophrenia: Scientific Evidence and Biological Mechanisms.

Curr Neuropharmacol. 2025

[6]
Advances in the Treatment of Cognitive Impairment in Schizophrenia: Targeting NMDA Receptor Pathways.

Int J Mol Sci. 2024-10-3

[7]
Abstinence and Fear Experienced during This Period Produce Distinct Cortical and Hippocampal Adaptations in Alcohol-Dependent Rats.

Brain Sci. 2024-4-26

[8]
Gypenoside XVII Reduces Synaptic Glutamate Release and Protects against Excitotoxic Injury in Rats.

Biomolecules. 2024-5-16

[9]
On the functions of astrocyte-mediated neuronal slow inward currents.

Neural Regen Res. 2024-12-1

[10]
Origanum majorana L. polyphenols: antiepileptic effect, in silico evaluation of their bioavailability, and interaction with the NMDA receptor.

Front Chem. 2024-1-19

本文引用的文献

[1]
Structural insights into NMDA receptor pharmacology.

Biochem Soc Trans. 2023-8-31

[2]
Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry.

Neuropsychopharmacology. 2024-1

[3]
GluN2B subunit selective N-methyl-D-aspartate receptor ligands: Democratizing recent progress to assist the development of novel neurotherapeutics.

Mol Divers. 2024-6

[4]
Pharmacological Potential of 3-Benzazepines in NMDAR-Linked Pathophysiological Processes.

Biomedicines. 2023-5-5

[5]
Black-Box Warnings of Antiseizure Medications: What is Inside the Box?

Pharmaceut Med. 2023-5

[6]
Discovery of novel tryptamine derivatives as GluN2B subunit-containing NMDA receptor antagonists via pharmacophore-merging strategy with orally available therapeutic effect of cerebral ischemia.

Eur J Med Chem. 2023-5-5

[7]
Quantitative analysis of NMDA receptor subunits proteins in mouse brain.

Neurochem Int. 2023-5

[8]
Role of Metal Cations of Copper, Iron, and Aluminum and Multifunctional Ligands in Alzheimer's Disease: Experimental and Computational Insights.

ACS Omega. 2023-1-25

[9]
Targeting NMDA Receptor Complex in Management of Epilepsy.

Pharmaceuticals (Basel). 2022-10-21

[10]
GluN2A-Selective NMDA Receptor Antagonists: Mimicking the U-Shaped Bioactive Conformation of TCN-201 by a [2.2]Paracyclophane System.

ChemMedChem. 2022-11-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索