Fallahasghari Elnaz Z, Højgaard Lynge Marie, Espholin Gudnason Emma, Munkerup Kristin, Mendes Ana C, Chronakis Ioannis S
DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Kemitorvet B202, 2800 Kgs. Lyngby, Denmark.
BASF A/S, Malmparken 5, 2750 Ballerup, Denmark.
Pharmaceutics. 2023 Nov 16;15(11):2633. doi: 10.3390/pharmaceutics15112633.
Vitamin A is an essential micronutrient that is readily oxidized. In this study, the encapsulation of vitamin A palmitate (AP) within a core-shell carbohydrate matrix by co-axial electrospray and its oxidative stability was evaluated. The electrosprayed core-shell microcapsules consisted of a shell of octenyl succinic anhydride (OSA) modified corn starch, maltose (Hi-Cap), and a core of ethyl cellulose-AP (average diameter of about 3.7 µm). The effect of different compounds (digestion-resistant maltodextrin, soy protein hydrolysate, casein protein hydrolysate, and lecithin) added to the base core-shell matrix formulation on the oxidative stability of AP was investigated. The oxidative stability of AP was evaluated using isothermal and non-isothermal differential scanning calorimetry (DSC), and Raman and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy methods. The core-shell carbohydrate matrix minimizes the amount of AP present at the microparticle surface, thus protecting AP from oxidation. Furthermore, the most effective oxidation protection was achieved when casein protein hydrolysate was added to the core of the microcapsule due to hydrophobic and hydrogen bond interactions with AP and by the resistant maltodextrin in the shell, which acted as a filler. The utilization of ethanol as a solvent for the dispersion of the core compounds increased the hydrophobicity of the hydrolyzed proteins and contributed to the enhancement of their antioxidant ability. Both the carbohydrate core-shell microcapsule prepared by co-axial electrospray and the addition of oxidation protection compounds enhance the oxidative stability of the encapsulated AP.
维生素A是一种易被氧化的必需微量营养素。在本研究中,评估了通过同轴电喷雾将棕榈酸视黄酯(AP)包裹在核壳碳水化合物基质中的情况及其氧化稳定性。电喷雾制备的核壳微胶囊由辛烯基琥珀酸酐(OSA)改性玉米淀粉、麦芽糖(Hi-Cap)组成的壳层以及乙基纤维素-AP组成的核层(平均直径约为3.7 µm)。研究了在基础核壳基质配方中添加不同化合物(抗消化麦芽糊精、大豆蛋白水解物、酪蛋白水解物和卵磷脂)对AP氧化稳定性的影响。使用等温及非等温差示扫描量热法(DSC)、拉曼光谱和衰减全反射傅里叶变换红外光谱(ATR-FTIR)方法评估AP的氧化稳定性。核壳碳水化合物基质可使存在于微粒表面的AP量降至最低,从而保护AP不被氧化。此外,由于与AP存在疏水和氢键相互作用,且壳层中的抗消化麦芽糊精作为填充剂,当在微胶囊核中添加酪蛋白水解物时,可实现最有效的氧化保护。使用乙醇作为核心化合物分散的溶剂增加了水解蛋白的疏水性,并有助于增强其抗氧化能力。通过同轴电喷雾制备的碳水化合物核壳微胶囊以及添加氧化保护化合物均可提高包裹的AP的氧化稳定性。