Okos Alexandru, Ciobota Cristina Florentina, Motoc Adrian Mihail, Piticescu Radu-Robert
National Research and Development Institute for Non-Ferrous and Rare Metals, 077145 Bucharest, Romania.
Materials (Basel). 2023 Nov 8;16(22):7088. doi: 10.3390/ma16227088.
The rapid development of portable electronic devices and the efforts to find alternatives to fossil fuels have triggered the rapid development of battery technology. The conventional lithium-ion batteries have reached a high degree of sophistication. However, improvements related to specific capacity, charge rate, safety and sustainability are still required. Solid state batteries try to answer these demands by replacing the organic electrolyte of the standard battery with a solid (crystalline, but also polymer and hybrid) electrolyte. One of the most promising solid electrolytes is LiLaTiO (LLTO). The material nevertheless presents a set of key challenges that must be resolved before it can be used for commercial applications. This review discusses the synthesis methods, the crystallographic and the ionic conduction properties of LLTO and the main limitations encountered through a number of selected studies on this material.
便携式电子设备的迅速发展以及寻找化石燃料替代品的努力引发了电池技术的快速发展。传统的锂离子电池已经达到了很高的成熟度。然而,在比容量、充电速率、安全性和可持续性方面仍需要改进。固态电池试图通过用固体(晶体、聚合物和混合)电解质取代标准电池的有机电解质来满足这些需求。最有前景的固体电解质之一是LiLaTiO(LLTO)。然而,这种材料在用于商业应用之前仍存在一系列必须解决的关键挑战。本文综述通过对该材料的一些选定研究,讨论了LLTO的合成方法、晶体学和离子传导特性以及遇到的主要限制。